Suppr超能文献

恶性疟原虫菌株在依赖线粒体电子传递链功能方面的差异。

Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function.

作者信息

Ke Hangjun, Morrisey Joanne M, Ganesan Suresh M, Painter Heather J, Mather Michael W, Vaidya Akhil B

机构信息

Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.

出版信息

Eukaryot Cell. 2011 Aug;10(8):1053-61. doi: 10.1128/EC.05049-11. Epub 2011 Jun 17.

Abstract

Previous studies demonstrated that Plasmodium falciparum strain D10 became highly resistant to the mitochondrial electron transport chain (mtETC) inhibitor atovaquone when the mtETC was decoupled from the pyrimidine biosynthesis pathway by expressing the fumarate-dependent (ubiquinone-independent) yeast dihydroorotate dehydrogenase (yDHODH) in parasites. To investigate the requirement for decoupled mtETC activity in P. falciparum with different genetic backgrounds, we integrated a single copy of the yDHODH gene into the genomes of D10attB, 3D7attB, Dd2attB, and HB3attB strains of the parasite. The yDHODH gene was equally expressed in all of the transgenic lines. All four yDHODH transgenic lines showed strong resistance to atovaquone in standard short-term growth inhibition assays. During longer term growth with atovaquone, D10attB-yDHODH and 3D7attB-yDHODH parasites remained fully resistant, but Dd2attB-yDHODH and HB3attB-yDHODH parasites lost their tolerance to the drug after 3 to 4 days of exposure. No differences were found, however, in growth responses among all of these strains to the Plasmodium-specific DHODH inhibitor DSM1 in either short- or long-term exposures. Thus, DSM1 works well as a selective agent in all parasite lines transfected with the yDHODH gene, whereas atovaquone works for some lines. We found that the ubiquinone analog decylubiquinone substantially reversed the atovaquone inhibition of Dd2attB-yDHODH and HB3attB-yDHODH transgenic parasites during extended growth. Thus, we conclude that there are strain-specific differences in the requirement for mtETC activity among P. falciparum strains, suggesting that, in erythrocytic stages of the parasite, ubiquinone-dependent dehydrogenase activities other than those of DHODH are dispensable in some strains but are essential in others.

摘要

先前的研究表明,当通过在疟原虫中表达依赖延胡索酸(不依赖泛醌)的酵母二氢乳清酸脱氢酶(yDHODH)使线粒体电子传递链(mtETC)与嘧啶生物合成途径解偶联时,恶性疟原虫D10株对线粒体电子传递链抑制剂阿托伐醌产生了高度抗性。为了研究不同遗传背景的恶性疟原虫中解偶联的mtETC活性的需求,我们将yDHODH基因的单拷贝整合到该寄生虫的D10attB、3D7attB、Dd2attB和HB3attB株的基因组中。yDHODH基因在所有转基因系中均等量表达。在标准的短期生长抑制试验中,所有四个yDHODH转基因系对阿托伐醌均表现出强抗性。在用阿托伐醌进行长期生长期间,D10attB-yDHODH和3D7attB-yDHODH疟原虫仍完全耐药,但Dd2attB-yDHODH和HB3attB-yDHODH疟原虫在暴露3至4天后失去了对该药物的耐受性。然而,在短期或长期暴露中,所有这些菌株对疟原虫特异性DHODH抑制剂DSM1的生长反应均未发现差异。因此,DSM1在所有转染了yDHODH基因的寄生虫系中均作为一种选择剂发挥良好作用,而阿托伐醌仅对某些系有效。我们发现,泛醌类似物癸基泛醌在延长生长期间可显著逆转阿托伐醌对Dd2attB-yDHODH和HB3attB-yDHODH转基因疟原虫的抑制作用。因此,我们得出结论,恶性疟原虫菌株之间对mtETC活性的需求存在菌株特异性差异,这表明,在该寄生虫的红细胞阶段,除DHODH之外的依赖泛醌的脱氢酶活性在某些菌株中是可有可无的,但在其他菌株中是必不可少的。

相似文献

1
Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function.
Eukaryot Cell. 2011 Aug;10(8):1053-61. doi: 10.1128/EC.05049-11. Epub 2011 Jun 17.
2
Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection.
Mol Biochem Parasitol. 2011 May;177(1):29-34. doi: 10.1016/j.molbiopara.2011.01.004. Epub 2011 Jan 18.
3
Mitochondrial RNA polymerase is an essential enzyme in erythrocytic stages of Plasmodium falciparum.
Mol Biochem Parasitol. 2012 Sep;185(1):48-51. doi: 10.1016/j.molbiopara.2012.05.001. Epub 2012 May 26.
4
Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum.
Nature. 2007 Mar 1;446(7131):88-91. doi: 10.1038/nature05572.
5
The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in .
J Biol Chem. 2018 May 25;293(21):8128-8137. doi: 10.1074/jbc.RA118.002552. Epub 2018 Apr 6.
6
Atovaquone tolerance in Plasmodium falciparum parasites selected for high-level resistance to a dihydroorotate dehydrogenase inhibitor.
Antimicrob Agents Chemother. 2015 Jan;59(1):686-9. doi: 10.1128/AAC.02347-14. Epub 2014 Oct 20.
7
Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum.
Antimicrob Agents Chemother. 2021 Feb 17;65(3). doi: 10.1128/AAC.02143-20.
8
Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum.
Antimicrob Agents Chemother. 2010 Dec;54(12):5281-7. doi: 10.1128/AAC.00937-10. Epub 2010 Sep 20.
9
Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages.
PLoS One. 2019 Apr 9;14(4):e0214023. doi: 10.1371/journal.pone.0214023. eCollection 2019.

引用本文的文献

1
Biogenesis of Cytochromes and in the Electron Transport Chain of Malaria Parasites.
ACS Infect Dis. 2025 Apr 11;11(4):813-826. doi: 10.1021/acsinfecdis.4c00450. Epub 2024 Oct 31.
3
Biogenesis of cytochromes and in the electron transport chain of malaria parasites.
bioRxiv. 2024 Oct 21:2024.02.01.575742. doi: 10.1101/2024.02.01.575742.
4
Direct tests of cytochrome and functions in the electron transport chain of malaria parasites.
Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2301047120. doi: 10.1073/pnas.2301047120. Epub 2023 May 1.
5
Parasite Malate-Quinone Oxidoreductase Functionally Complements a Yeast Deletion Mutant of Mitochondrial Malate Dehydrogenase.
Microbiol Spectr. 2023 Jun 15;11(3):e0016823. doi: 10.1128/spectrum.00168-23. Epub 2023 Apr 10.
6
Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites.
bioRxiv. 2023 Jan 23:2023.01.23.525242. doi: 10.1101/2023.01.23.525242.
7
Transcriptional changes in Plasmodium falciparum upon conditional knock down of mitochondrial ribosomal proteins RSM22 and L23.
PLoS One. 2022 Oct 6;17(10):e0274993. doi: 10.1371/journal.pone.0274993. eCollection 2022.
9
Design, synthesis, and biological evaluation of multiple targeting antimalarials.
Acta Pharm Sin B. 2021 Sep;11(9):2900-2913. doi: 10.1016/j.apsb.2021.05.008. Epub 2021 May 20.
10
Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from .
Int J Mol Sci. 2021 Jul 22;22(15):7830. doi: 10.3390/ijms22157830.

本文引用的文献

1
Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection.
Mol Biochem Parasitol. 2011 May;177(1):29-34. doi: 10.1016/j.molbiopara.2011.01.004. Epub 2011 Jan 18.
2
Metabolic fate of fumarate, a side product of the purine salvage pathway in the intraerythrocytic stages of Plasmodium falciparum.
J Biol Chem. 2011 Mar 18;286(11):9236-45. doi: 10.1074/jbc.M110.173328. Epub 2011 Jan 5.
3
Hemozoin-free Plasmodium falciparum mitochondria for physiological and drug susceptibility studies.
Mol Biochem Parasitol. 2010 Dec;174(2):150-3. doi: 10.1016/j.molbiopara.2010.07.006. Epub 2010 Jul 30.
4
The sites and topology of mitochondrial superoxide production.
Exp Gerontol. 2010 Aug;45(7-8):466-72. doi: 10.1016/j.exger.2010.01.003. Epub 2010 Jan 11.
5
Mitochondrial evolution and functions in malaria parasites.
Annu Rev Microbiol. 2009;63:249-67. doi: 10.1146/annurev.micro.091208.073424.
7
Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors.
Bioorg Med Chem Lett. 2009 Feb 1;19(3):972-5. doi: 10.1016/j.bmcl.2008.11.071. Epub 2008 Nov 24.
8
Mitochondria in malaria and related parasites: ancient, diverse and streamlined.
J Bioenerg Biomembr. 2008 Oct;40(5):425-33. doi: 10.1007/s10863-008-9176-4. Epub 2008 Sep 24.
10
The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress.
J Int Soc Sports Nutr. 2005 Dec 9;2(2):38-44. doi: 10.1186/1550-2783-2-2-38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验