de Groot H J, Smith S O, Courtin J, van den Berg E, Winkel C, Lugtenburg J, Griffin R G, Herzfeld J
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139.
Biochemistry. 1990 Jul 24;29(29):6873-83. doi: 10.1021/bi00481a017.
The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane (lambda max greater than 600 nm) is also formed by deionization of neutral purple membrane suspensions. Low-temperature, magic angle spinning 13C and 15N NMR was used to investigate the transitions to the blue and acid purple states. The 15N NMR studies involved [epsilon-15N]lysine bR, allowing a detailed investigation of effects at the Schiff base nitrogen. The 15N resonance shifts approximately 16 ppm upfield in the neutral purple to blue transition and returns to its original value in the blue to acid purple transition. Thus, the 15N shift correlates directly with the color changes, suggesting an important contribution of the Schiff base counterion to the "opsin shift". The results indicate weaker hydrogen bonding in the blue form than in the two purple forms and permit a determination of the contribution of the weak hydrogen bonding to the opsin shift at a neutral pH of approximately 2000 cm-1. An explanation of the mechanism of the purple to blue to purple transition is given in terms of the complex counterion model. The 13C NMR experiments were performed on samples specifically 13C labeled at the C-5, C-12, C-13, C-14, or C-15 positions in the retinylidene chromophore. The effects of the purple to blue to purple transitions on the isotropic chemical shifts for the various 13C resonances are relatively small. It appears that bR600 consists of at least four different species. The data confirm the presence of 13-cis- and all-trans-retinal in the blue form, as in neutral purple dark-adapted bR. All spectra of the blue and acid purple bR show substantial inhomogeneous broadening which indicates additional irregular distortions of the protein lattice. The amount of distortion correlates with the variation of the pH, and not with the color change.
细菌视紫红质(bR)的可见吸收对pH高度敏感,随着用HCl进一步降低pH,其最大值从568nm(pH 7)移至约600nm(pH 2),并在pH进一步降至0时回到565nm。蓝色膜(最大波长大于600nm)也可通过中性紫色膜悬浮液的去离子化形成。利用低温、魔角旋转13C和15N核磁共振来研究向蓝色和酸性紫色状态的转变。15N核磁共振研究涉及[ε-15N]赖氨酸bR,从而能够详细研究席夫碱氮处的效应。在从中性紫色到蓝色的转变中,15N共振向高场移动约16ppm,并在从蓝色到酸性紫色的转变中回到其原始值。因此,15N位移与颜色变化直接相关,表明席夫碱抗衡离子对“视蛋白位移”有重要贡献。结果表明,蓝色形式中的氢键比两种紫色形式中的弱,并允许确定在约2000cm-1的中性pH下弱氢键对视蛋白位移的贡献。根据复合抗衡离子模型给出了从紫色到蓝色再到紫色转变的机制解释。13C核磁共振实验是在视黄叉发色团中C-5、C-12、C-13、C-14或C-15位置特异性标记13C的样品上进行的。紫色到蓝色再到紫色的转变对各种13C共振的各向同性化学位移的影响相对较小。似乎bR600至少由四种不同的物种组成。数据证实,与中性紫色暗适应的bR一样,蓝色形式中存在13-顺式和全反式视黄醛。蓝色和酸性紫色bR的所有光谱都显示出大量的不均匀展宽,这表明蛋白质晶格存在额外的不规则畸变。畸变的程度与pH的变化相关,而与颜色变化无关。