Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Phys Chem Chem Phys. 2011 Jul 28;13(28):13009-20. doi: 10.1039/c1cp21015g. Epub 2011 Jun 20.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited Ã(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the à ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).
采用成像光电离-光电离符合(iPEPICO)光谱法研究了能量选择的甲醇同位素(CH(3)OH、CD(3)OH、CH(3)OD 和 CD(3)OD)阳离子的离解光电子电离。第一次离解是碳原子上的 H/D-原子丢失,这也通过部分氘化得到证实。在略高于 12 eV 时,一个平行的 H(2)-损失通道微弱地表现出来。在光子能量高于 15 eV 时,在连续的氢分子损失到第一个 H-原子损失中,CHO(+)/CDO(+)的形成占主导地位,而不是 COH(+)/COD(+)的形成。在这些过程中,我们几乎没有证据表明存在 H-原子交换。在对应于 B[combining tilde]和 C[combining tilde]离子态的光子能量范围内,出现了羟基自由基损失,生成 CH(3)(+)/CD(3)(+)。基于分支比、统计考虑和从头算计算,证实该过程发生在第一电子激发Ã(2)A'离子态上。不同寻常的是,由于 X[combining tilde]和Ã离子态之间显然较弱的 Renner-Teller 样耦合,内部转换被单分子解离所取代。实验测定的离子 CH(2)OH(+)、CD(2)OH(+)、CH(2)OD(+)和 CD(2)OD(+)的 0 K 表观能分别为 11.646 ± 0.003 eV、11.739 ± 0.003 eV、11.642 ± 0.003 eV 和 11.737 ± 0.003 eV。基于独立测量的同位素结果和计算的零点能效应,得到 E(0)(CH(2)OH(+))=11.6454 ± 0.0017 eV。确定 CH(2)OH(+)、质子化甲醛的 0 K 生成热为 717.7 ± 0.7 kJ mol(-1)。这给出了 CH(2)OH 的-11.1 ± 0.9 kJ mol(-1)的 0 K 生成焓和实验 298 K 甲醛的质子亲和势为 711.6 ± 0.8 kJ mol(-1)。从 CH(3)OH(+)中同核 H(2)-损失的反向势垒被确定为 36 kJ mol(-1),而对于 CH(2)OH(+)中异核 H(2)-损失,其反向势垒为 210 kJ mol(-1)。