School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
J Phys Chem A. 2012 Oct 4;116(39):9696-705. doi: 10.1021/jp307941k. Epub 2012 Sep 20.
Internal energy selected halomethane cations CH(3)Cl(+), CH(2)Cl(2)(+), CHCl(3)(+), CH(3)F(+), CH(2)F(2)(+), CHClF(2)(+), and CBrClF(2)(+) were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH(3)F(+), CH(2)F(2)(+), and CH(3)Cl(+), chlorine atom loss for CH(2)Cl(2)(+), CHCl(3)(+), and CHClF(2)(+), and bromine atom loss for CBrClF(2)(+). Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl(3)(+), CHClF(2)(+), and CBrClF(2)(+) do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep-well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV, and 11.23 ± 0.03 eV for CHCl(3), CHClF(2), and CBrClF(2), respectively. The updated 0 K enthalpies of formation, Δ(f)H(o)(0K)(g) for the ions CH(2)F(+), CHF(2)(+), CHCl(2)(+), CCl(3)(+), CCl(2)F(+), and CClF(2)(+) have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3, and 552.2 ± 3.4 kJ mol(-1), respectively. The Δ(f)H(o)(0K)(g) values for the neutrals CCl(4), CBrClF(2), CClF(3), CCl(2)F(2), and CCl(3)F and have been determined to be -94.0 ± 3.2, -446.6 ± 2.7, -702.1 ± 3.5, -487.8 ± 3.4, and -285.2 ± 3.2 kJ mol(-1), respectively.
内部能量选择的卤代甲烷阳离子 CH(3)Cl(+)、CH(2)Cl(2)(+)、CHCl(3)(+)、CH(3)F(+)、CH(2)F(2)(+)、CHClF(2)(+) 和 CBrClF(2)(+) 是通过真空紫外光解制备的,并使用成像光电离光电子符合光谱学 (iPEPICO) 研究了它们的最低能量解离通道。这个通道涉及到氢原子的损失对于 CH(3)F(+)、CH(2)F(2)(+) 和 CH(3)Cl(+),氯原子的损失对于 CH(2)Cl(2)(+)、CHCl(3)(+) 和 CHClF(2)(+),以及溴原子的损失对于 CBrClF(2)(+)。准确的 0 K 表观能,结合从头算等电子体和卤素交换反应能,建立了热化学网络,该网络经过优化,以更新和确认样品分子及其离解光离子产物的生成焓。CHCl(3)(+)、CHClF(2)(+) 和 CBrClF(2)(+) 的基态电子态不符合深井假设,实验分解曲线在低能区偏离深井模型。对这种浅井系统的分解曲线分析提供了一条令人满意的简洁途径来获得母体分子的绝热电离能,特别是如果未分辨出阈值光电子谱并且不切实际地采用纯粹的计算途径。已经发现 CHCl(3)、CHClF(2) 和 CBrClF(2) 的电离能分别为 11.47 ± 0.01 eV、12.30 ± 0.02 eV 和 11.23 ± 0.03 eV。离子 CH(2)F(+)、CHF(2)(+)、CHCl(2)(+)、CCl(3)(+)、CCl(2)F(+) 和 CClF(2)(+) 的更新的 0 K 生成焓 Δ(f)H(o)(0K)(g) 分别为 844.4 ± 2.1、601.6 ± 2.7、890.3 ± 2.2、849.8 ± 3.2、701.2 ± 3.3 和 552.2 ± 3.4 kJ mol(-1)。中性 CCl(4)、CBrClF(2)、CClF(3)、CCl(2)F(2) 和 CCl(3)F 的 Δ(f)H(o)(0K)(g) 值分别确定为-94.0 ± 3.2、-446.6 ± 2.7、-702.1 ± 3.5、-487.8 ± 3.4 和-285.2 ± 3.2 kJ mol(-1)。