Suppr超能文献

加速大豆的产量潜力:生物技术改良的潜在目标。

Accelerating yield potential in soybean: potential targets for biotechnological improvement.

机构信息

USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL 61801, USA.

出版信息

Plant Cell Environ. 2012 Jan;35(1):38-52. doi: 10.1111/j.1365-3040.2011.02378.x. Epub 2011 Jul 21.

Abstract

Soybean (Glycine max Merr.) is the world's most widely grown legume and provides an important source of protein and oil. Global soybean production and yield per hectare increased steadily over the past century with improved agronomy and development of cultivars suited to a wide range of latitudes. In order to meet the needs of a growing world population without unsustainable expansion of the land area devoted to this crop, yield must increase at a faster rate than at present. Here, the historical basis for the yield gains realized in the past 90 years are examined together with potential metabolic targets for achieving further improvements in yield potential. These targets include improving photosynthetic efficiency, optimizing delivery and utilization of carbon, more efficient nitrogen fixation and altering flower initiation and abortion. Optimization of investment in photosynthetic enzymes, bypassing photorespiratory metabolism, engineering the electron transport chain and engineering a faster recovery from the photoprotected state are different strategies to improve photosynthesis in soybean. These potential improvements in photosynthetic carbon gain will need to be matched by increased carbon and nitrogen transport to developing soybean pods and seeds in order to maximize the benefit. Better understanding of control of carbon and nitrogen transport along with improved knowledge of the regulation of flower initiation and abortion will be needed to optimize sink capacity in soybean. Although few single targets are likely to deliver a quantum leap in yields, biotechnological advances in molecular breeding techniques that allow for alteration of the soybean genome and transcriptome promise significant yield gains.

摘要

大豆(Glycine max Merr.)是世界上种植最广泛的豆科植物,为蛋白质和油提供了重要来源。在过去的一个世纪中,随着农业技术的改进和适合不同纬度的品种的开发,全球大豆产量和每公顷产量稳步增长。为了满足不断增长的世界人口的需求,而又不使用于种植这种作物的土地面积无可持续地扩大,产量必须以比现在更快的速度增长。在这里,我们研究了过去 90 年中实现的产量增长的历史基础,以及实现进一步提高产量潜力的潜在代谢目标。这些目标包括提高光合作用效率、优化碳的传递和利用、更有效的固氮以及改变花的起始和败育。优化光合酶的投资、绕过光呼吸代谢、工程电子传递链和工程更快地从光保护状态中恢复,是提高大豆光合作用的不同策略。这些潜在的光合作用碳增益的改进将需要与增加碳和氮向发育中的大豆荚和种子的传递相匹配,以最大限度地提高效益。为了优化大豆的库容量,需要更好地理解碳氮运输的控制以及花起始和败育的调节。尽管很少有单一的目标可能会带来产量的飞跃,但分子育种技术的生物技术进步,允许改变大豆基因组和转录组,有望带来显著的产量增长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验