Suppr超能文献

糖尿病进展过程中Goto-Kakizaki大鼠肝脏微阵列数据的网络筛选

Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression.

作者信息

Zhou Huarong, Saito Shigeru, Piao Guanying, Liu Zhi-Ping, Wang Jiguang, Horimoto Katsuhisa, Chen Luonan

机构信息

Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

BMC Syst Biol. 2011 Jun 20;5 Suppl 1(Suppl 1):S16. doi: 10.1186/1752-0509-5-S1-S16.

Abstract

BACKGROUND

Type 2 diabetes mellitus (T2DM) is a complex systemic disease, with significant disorders of metabolism. The liver, a central energy metabolic organ, plays a critical role in the development of diabetes. Although gene expression levels are able to be measured via microarray since 1996, it is difficult to evaluate the contributions of one altered gene expression to a specific disease. One of the reasons is that a whole network picture responsible for a specific phase of diabetes is missing, while a single gene has to be put into a network picture to evaluate its importance. In the aim of identifying significant transcriptional regulatory networks in the liver contributing to diabetes, we have performed comprehensive active regulatory network survey by network screening in 4 weeks (w), 8-12 w, and 18-20 w Goto-Kakizaki (GK) rat liver microarray data.

RESULTS

We identify active regulatory networks in GK rat by network screening in the following procedure. First, the regulatory networks are compiled by using the known binary relationships between the transcriptional factors and their regulated genes and the biological classification scheme, and second, the consistency of each regulatory network with the microarray data measured in GK rat is estimated to detect the active networks under the corresponding conditions. The comprehensive survey of the consistency between the networks and the measured data by the network screening approach in the case of non-insulin dependent diabetes in the GK rat reveals: 1. More pathways are active during inter-middle stage diabetes; 2. Inflammation, hypoxia, increased apoptosis, decreased proliferation, and altered metabolism are characteristics and display as early as 4 weeks in GK strain; 3. Diabetes progression accompanies insults and compensations; 4. Nuclear receptors work in concert to maintain normal glycemic robustness system.

CONCLUSION

Notably this is the first comprehensive network screening study of non-insulin dependent diabetes in the GK rat based on high throughput data of the liver. Several important pathways have been revealed playing critical roles in the diabetes progression. Our findings also implicate that network screening is able to help us understand complex disease such as diabetes, and demonstrate the power of network systems biology approach to elucidate the essential mechanisms which would escape conventional single gene-based analysis.

摘要

背景

2型糖尿病(T2DM)是一种复杂的全身性疾病,伴有显著的代谢紊乱。肝脏作为能量代谢的中心器官,在糖尿病的发生发展中起着关键作用。自1996年以来,虽然基因表达水平能够通过微阵列进行测量,但评估一个改变的基因表达对特定疾病的作用却很困难。原因之一是,缺少负责糖尿病特定阶段的完整网络图谱,而单个基因必须置于网络图谱中才能评估其重要性。为了识别肝脏中导致糖尿病的重要转录调控网络,我们通过对4周(w)、8 - 12周和18 - 20周的Goto - Kakizaki(GK)大鼠肝脏微阵列数据进行网络筛选,开展了全面的活性调控网络研究。

结果

我们通过以下步骤在GK大鼠中通过网络筛选识别活性调控网络。首先,利用转录因子与其调控基因之间已知的二元关系以及生物分类方案构建调控网络,其次,估计每个调控网络与GK大鼠中测量的微阵列数据的一致性,以检测相应条件下的活性网络。通过网络筛选方法对GK大鼠非胰岛素依赖型糖尿病情况下网络与测量数据之间的一致性进行全面研究发现:1. 在糖尿病中期,更多的信号通路处于激活状态;2. 炎症、缺氧、凋亡增加、增殖减少和代谢改变是GK品系早在4周时就出现的特征;3. 糖尿病进展伴随着损伤和代偿;4. 核受体协同作用以维持正常的血糖稳健系统。

结论

值得注意的是,这是首次基于肝脏的高通量数据对GK大鼠非胰岛素依赖型糖尿病进行的全面网络筛选研究。揭示了几个在糖尿病进展中起关键作用的重要信号通路。我们的研究结果还表明,网络筛选能够帮助我们理解诸如糖尿病等复杂疾病,并证明了网络系统生物学方法在阐明传统单基因分析无法发现的基本机制方面的强大作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c56/3121116/c6124f0826c1/1752-0509-5-S1-S16-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验