Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
Biophys J. 2011 Jun 22;100(12):2974-80. doi: 10.1016/j.bpj.2011.05.007.
A detailed understanding of the kinetics of DNA motion though nanometer-scale pores is important for the successful development of many of the proposed next-generation rapid DNA sequencing and analysis methods. Many of these approaches require DNA motion through nanopores to be slowed by several orders of magnitude from its native translocation velocity so that the translocation times for individual nucleotides fall within practical timescales for detection. With the increased dwell time of DNA in the pore, DNA-pore interactions begin to play an increasingly important role in translocation kinetics. In previous work, we and others observed that when the DNA dwell time in the pore is substantial (>1 ms), DNA motion in α-hemolysin (α-HL) pores leads to nonexponential kinetics in the escape of DNA out of the pore. Here we show that a three-state model for DNA escape, involving stochastic binding interactions of DNA with the pore, accurately reproduces the experimental data. In addition, we investigate the sequence dependence of the DNA escape process and show that the interaction strength of adenine with α-HL is substantially lower relative to cytosine. Our results indicate a difference in the process by which DNA moves through an α-HL nanopore when the motion is fast (microsecond timescale) as compared with when it is slow (millisecond timescale) and strongly influenced by DNA-pore interactions of the kind reported here. We also show the ability of wild-type α-HL to detect and distinguish between 5-methylcytosine and cytosine based on differences in the absolute ionic current through the pore in the presence of these two nucleotides. The results we present here regarding sequence-dependent (and dwell-time-dependent) DNA-pore interaction kinetics will have important implications for the design of methods for DNA analysis through reduced-velocity motion in nanopores.
详细了解 DNA 通过纳米级孔道的运动动力学对于成功开发许多拟议的下一代快速 DNA 测序和分析方法至关重要。这些方法中的许多都需要通过纳米孔来使 DNA 运动的速度减缓几个数量级,从而使单个核苷酸的迁移时间落在可检测的实际时间范围内。随着 DNA 在孔中的停留时间增加,DNA-孔相互作用开始在迁移动力学中发挥越来越重要的作用。在以前的工作中,我们和其他人观察到,当 DNA 在孔中的停留时间较长(>1 ms)时,DNA 在α-溶血素(α-HL)孔中的运动导致 DNA 从孔中逃逸的非指数动力学。在这里,我们展示了一个涉及 DNA 与孔随机结合相互作用的 DNA 逃逸三态模型,可以准确地再现实验数据。此外,我们研究了 DNA 逃逸过程的序列依赖性,并表明腺嘌呤与α-HL 的相互作用强度相对于胞嘧啶明显降低。我们的结果表明,当 DNA 运动速度较快(微秒时间尺度)与较慢(毫秒时间尺度)时,DNA 通过α-HL 纳米孔的运动过程存在差异,并且强烈受到此处报道的那种 DNA-孔相互作用的影响。我们还展示了野生型α-HL 基于在存在这两种核苷酸时通过孔的绝对离子电流的差异来检测和区分 5-甲基胞嘧啶和胞嘧啶的能力。我们在这里提出的关于序列依赖性(和停留时间依赖性)DNA-孔相互作用动力学的结果对于通过纳米孔中降低速度的运动进行 DNA 分析方法的设计将具有重要意义。