Suppr超能文献

2005-2006 年泰国清迈省年轻冰毒使用者参与贩毒或为牟利贩毒的预测因素。

Predictors of incident and recurrent participation in the sale or delivery of drugs for profit amongst young methamphetamine users in Chiang Mai Province, Thailand, 2005-2006.

机构信息

Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.

出版信息

Int J Drug Policy. 2011 Jul;22(4):259-66. doi: 10.1016/j.drugpo.2011.05.004. Epub 2011 Jun 20.

Abstract

BACKGROUND

Despite Thailand's war on drugs, methamphetamine ("yaba" in Thai) use and the drug economy both thrive. This analysis identifies predictors of incident and recurrent involvement in the sale or delivery of drugs for profit amongst young Thai yaba users.

METHODS

Between April 2005 and June 2006, 983 yaba users, ages 18-25, were enrolled in a randomized behavioural intervention in Chiang Mai Province (415 index and 568 of their drug network members). Questionnaires administered at baseline, 3-, 6-, 9-, and 12-month follow-up visits assessed socio-demographic factors, current and prior drug use, social network characteristics, sexual risk behaviours and drug use norms. Exposures were lagged by three months (prior visit). Outcomes included incident and recurrent drug economy involvement. Generalized linear mixed models were fit using GLIMMIX (SASv9.1).

RESULTS

Incident drug economy involvement was predicted by yaba use frequency (adjusted odds ratio [AOR]: 1.05; 95% confidence interval [CI]: 1.01, 1.10), recent incarceration (AOR: 2.37; 95% CI: 1.07, 5.25) and the proportion of yaba-using networks who quit recently (AOR: .34; 95% CI: .15, .78). Recurrent drug economy involvement was predicted by age (AOR: 0.81; 95% CI: 0.68, 0.96), frequency of yaba use (AOR: 1.06; 95% CI: 1.02, 1.09), drug economy involvement at the previous visit (AOR: 2.61; CI: 1.59, 4.28), incarceration in the prior three months (AOR: 2.29; 95% CI: 1.07, 4.86), and the proportion of yaba-users in his/her network who quit recently (AOR: .38; 95% CI: .20, .71).

CONCLUSION

Individual drug use, drug use in social networks and recent incarceration were predictors of incident and recurrent involvement in the drug economy. These results suggest that interrupting drug use and/or minimizing the influence of drug-using networks may help prevent further involvement in the drug economy. The emergence of recent incarceration as a predictor for both models highlights the need for more appropriate drug rehabilitation programmes and demonstrates that continued criminalization of drug users may fuel Thailand's yaba epidemic.

摘要

背景

尽管泰国开展了禁毒战争,但冰毒(泰语中称为“yaba”)的使用和毒品经济都在蓬勃发展。本分析旨在确定年轻的泰国 yaba 使用者中与贩毒相关的新发病例和复发的预测因素。

方法

2005 年 4 月至 2006 年 6 月期间,983 名年龄在 18-25 岁之间的 yaba 使用者在清迈省参加了一项随机行为干预研究(415 名索引参与者和 568 名其药物网络成员)。基线、3 个月、6 个月、9 个月和 12 个月的随访访问中使用问卷评估社会人口统计学因素、当前和以前的药物使用情况、社会网络特征、性风险行为和药物使用规范。暴露因素滞后三个月(前一次访问)。结果包括新发病例和复发的药物经济参与。使用 GLIMMIX(SASv9.1)拟合广义线性混合模型。

结果

yaba 使用频率(调整优势比 [AOR]:1.05;95%置信区间 [CI]:1.01,1.10)、近期监禁(AOR:2.37;95% CI:1.07,5.25)和最近退出 yaba 使用网络的比例(AOR:0.34;95% CI:0.15,0.78)预测新发病例药物经济参与。复发药物经济参与由年龄(AOR:0.81;95% CI:0.68,0.96)、yaba 使用频率(AOR:1.06;95% CI:1.02,1.09)、上次就诊时的药物经济参与(AOR:2.61;CI:1.59,4.28)、过去三个月的监禁(AOR:2.29;95% CI:1.07,4.86)和网络中最近退出 yaba 使用的人数(AOR:0.38;95% CI:0.20,0.71)预测。

结论

个体药物使用、网络中的药物使用和近期监禁是新发病例和复发药物经济参与的预测因素。这些结果表明,中断药物使用和/或最大限度地减少使用药物的网络的影响可能有助于防止进一步参与药物经济。最近监禁作为两个模型的预测因素的出现突出表明需要更合适的戒毒康复计划,并表明对吸毒者的持续刑事定罪可能会加剧泰国的 yaba 流行。

相似文献

3
Police confrontations among street-involved youth in a Canadian setting.加拿大街头青年的警察对抗。
Int J Drug Policy. 2013 Jan;24(1):46-51. doi: 10.1016/j.drugpo.2012.06.008. Epub 2012 Aug 9.

本文引用的文献

4
The initiation of homeless youth into the street economy.无家可归的青少年开始涉足街头经济。
J Adolesc. 2009 Apr;32(2):357-77. doi: 10.1016/j.adolescence.2008.01.004. Epub 2008 Aug 28.
9
The impact of a police presence on access to needle exchange programs.警察在场对针头交换项目获取情况的影响。
J Acquir Immune Defic Syndr. 2003 Sep 1;34(1):116-8. doi: 10.1097/00126334-200309010-00019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验