Kim Kion, Sentürk Damla, Li Runze
Department of Statistics, The Pennsylvania State University.
J Stat Plan Inference. 2011 Apr 1;141(4):1554-1566. doi: 10.1016/j.jspi.2010.11.003.
We consider the recent history functional linear models, relating a longitudinal response to a longitudinal predictor where the predictor process only in a sliding window into the recent past has an effect on the response value at the current time. We propose an estimation procedure for recent history functional linear models that is geared towards sparse longitudinal data, where the observation times across subjects are irregular and total number of measurements per subject is small. The proposed estimation procedure builds upon recent developments in literature for estimation of functional linear models with sparse data and utilizes connections between the recent history functional linear models and varying coefficient models. We establish uniform consistency of the proposed estimators, propose prediction of the response trajectories and derive their asymptotic distribution leading to asymptotic point-wise confidence bands. We include a real data application and simulation studies to demonstrate the efficacy of the proposed methodology.
我们考虑近期历史功能线性模型,该模型将纵向响应与纵向预测变量相关联,其中预测变量过程仅在进入近期过去的滑动窗口内对当前时间的响应值产生影响。我们针对稀疏纵向数据提出了一种近期历史功能线性模型的估计程序,其中不同受试者的观测时间不规则且每个受试者的测量总数较少。所提出的估计程序基于文献中用于稀疏数据功能线性模型估计的最新进展,并利用了近期历史功能线性模型与变系数模型之间的联系。我们建立了所提出估计量的一致一致性,提出了响应轨迹的预测,并推导了它们的渐近分布,从而得出渐近逐点置信带。我们纳入了一个实际数据应用和模拟研究,以证明所提出方法的有效性。