Suppr超能文献

非参数预测模型在稀疏和不规则纵向数据中的应用。

Nonparametric predictive model for sparse and irregular longitudinal data.

机构信息

Department of Statistics, Miami University, Oxford, OH 45056, United States.

Department of Biostatistics, University of Iowa, Iowa City, IA 52246, United States.

出版信息

Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad023.

Abstract

We propose a kernel-based estimator to predict the mean response trajectory for sparse and irregularly measured longitudinal data. The kernel estimator is constructed by imposing weights based on the subject-wise similarity on L2 metric space between predictor trajectories, where we assume that an analogous fashion in predictor trajectories over time would result in a similar trend in the response trajectory among subjects. In order to deal with the curse of dimensionality caused by the multiple predictors, we propose an appealing multiplicative model with multivariate Gaussian kernels. This model is capable of achieving dimension reduction as well as selecting functional covariates with predictive significance. The asymptotic properties of the proposed nonparametric estimator are investigated under mild regularity conditions. We illustrate the robustness and flexibility of our proposed method via extensive simulation studies and an application to the Framingham Heart Study.

摘要

我们提出了一种基于核的估计器,用于预测稀疏和不规则测量的纵向数据的平均响应轨迹。核估计器是通过在 L2 度量空间上基于预测轨迹之间的主体相似性施加权重来构建的,其中我们假设预测轨迹随时间的相似模式将导致主体之间的响应轨迹的相似趋势。为了处理由多个预测因子引起的维数诅咒,我们提出了一种具有多元高斯核的吸引人的乘法模型。该模型能够实现降维和选择具有预测意义的功能协变量。在温和的正则条件下,研究了所提出的非参数估计器的渐近性质。我们通过广泛的模拟研究和对弗雷明汉心脏研究的应用来说明我们提出的方法的稳健性和灵活性。

相似文献

1
Nonparametric predictive model for sparse and irregular longitudinal data.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad023.
2
Predictive generalized varying-coefficient longitudinal model.
Stat Med. 2021 Dec 10;40(28):6243-6259. doi: 10.1002/sim.9180. Epub 2021 Sep 7.
3
A kernel regression model for panel count data with nonparametric covariate functions.
Biometrics. 2022 Jun;78(2):586-597. doi: 10.1111/biom.13440. Epub 2021 Feb 24.
4
Kernel Estimation of Bivariate Time-varying Coefficient Model for Longitudinal Data with Terminal Event.
J Am Stat Assoc. 2024;119(546):1102-1111. doi: 10.1080/01621459.2023.2169702. Epub 2023 Feb 28.
5
Recent History Functional Linear Models for Sparse Longitudinal Data.
J Stat Plan Inference. 2011 Apr 1;141(4):1554-1566. doi: 10.1016/j.jspi.2010.11.003.
6
Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.
J Am Stat Assoc. 2007 Jun 1;102(478):632-641. doi: 10.1198/016214507000000095.
7
Dimension reduced kernel estimation for distribution function with incomplete data.
J Stat Plan Inference. 2011 Sep;141(9):3084-3093. doi: 10.1016/j.jspi.2011.03.030.
8
Variable Selection for Nonparametric Learning with Power Series Kernels.
Neural Comput. 2019 Aug;31(8):1718-1750. doi: 10.1162/neco_a_01212. Epub 2019 Jul 1.
9
Nonparametric regression with right-censored covariate via conditional density function.
Stat Med. 2022 May 20;41(11):2025-2051. doi: 10.1002/sim.9343. Epub 2022 Feb 6.
10
Varying Coefficient Models for Sparse Noise-contaminated Longitudinal Data.
Stat Sin. 2011 Oct;21(4):1831-1856. doi: 10.5705/ss.2009.328.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验