Department of Statistics, Miami University, Oxford, OH 45056, United States.
Department of Biostatistics, University of Iowa, Iowa City, IA 52246, United States.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad023.
We propose a kernel-based estimator to predict the mean response trajectory for sparse and irregularly measured longitudinal data. The kernel estimator is constructed by imposing weights based on the subject-wise similarity on L2 metric space between predictor trajectories, where we assume that an analogous fashion in predictor trajectories over time would result in a similar trend in the response trajectory among subjects. In order to deal with the curse of dimensionality caused by the multiple predictors, we propose an appealing multiplicative model with multivariate Gaussian kernels. This model is capable of achieving dimension reduction as well as selecting functional covariates with predictive significance. The asymptotic properties of the proposed nonparametric estimator are investigated under mild regularity conditions. We illustrate the robustness and flexibility of our proposed method via extensive simulation studies and an application to the Framingham Heart Study.
我们提出了一种基于核的估计器,用于预测稀疏和不规则测量的纵向数据的平均响应轨迹。核估计器是通过在 L2 度量空间上基于预测轨迹之间的主体相似性施加权重来构建的,其中我们假设预测轨迹随时间的相似模式将导致主体之间的响应轨迹的相似趋势。为了处理由多个预测因子引起的维数诅咒,我们提出了一种具有多元高斯核的吸引人的乘法模型。该模型能够实现降维和选择具有预测意义的功能协变量。在温和的正则条件下,研究了所提出的非参数估计器的渐近性质。我们通过广泛的模拟研究和对弗雷明汉心脏研究的应用来说明我们提出的方法的稳健性和灵活性。