Harvard University Physics Department, 17 Oxford Street, Cambridge, MA 02138, USA.
Phys Chem Chem Phys. 2011 Nov 14;13(42):18976-85. doi: 10.1039/c1cp20901a. Epub 2011 Jun 22.
Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ∼10(15)-10(16) cm(-3) (Reynolds number ∼1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ∼10(11) ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A. C. Vutha et al., J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 074007], the neon-based beam has the following characteristics: forward velocity of 170 m s(-1), internal temperature of 3.4 K, and brightness of 3 × 10(11) ground state molecules per steradian per pulse. Compared to typical supersonic sources, the relatively low stagnation density of this source and the fact that the cooling mechanism relies only on collisions with an inert buffer gas make it widely applicable to many atomic and molecular species, including those which are chemically reactive, such as ThO.
优化并表征了冷却至深低温的一氧化钍(ThO)分子缓冲气体束源。氦气和氖气缓冲气体源均能产生具有高通量、低发散度、低前向速度和低温内部温度的 ThO 束,适用于各种停滞密度和喷嘴直径。该束流在约 10(15)-10(16)cm(-3)(雷诺数约为 1-100)的缓冲气体停滞密度下运行,导致 ThO 的内部温度膨胀冷却至低至 2K。对于基于氖气(氦气)的源,这表示初始喷嘴温度约为 20K(4K)时冷却了约 10(2)倍(约 10(2)倍)。这些源在 10Hz 重复率下的 1-3ms 长脉冲内,可在单个量子态下输送约 10(11)个 ThO 分子。在未来精密光谱学应用的优化条件下[A.C.Vutha 等人,J.Phys.B:At.,Mol.Opt.Phys.,2010,43,074007],基于氖气的束流具有以下特点:前向速度为 170m/s,内部温度为 3.4K,亮度为每脉冲每立体角 3×10(11)个基态分子。与典型的超声速源相比,该源的相对较低的停滞密度以及冷却机制仅依赖于与惰性缓冲气体的碰撞这一事实,使其广泛适用于许多原子和分子物种,包括那些具有化学反应性的物种,如 ThO。