Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
Inorg Chem. 2011 Aug 1;50(15):7106-22. doi: 10.1021/ic2006265. Epub 2011 Jun 23.
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: M(S(2)C(2)R(2))(3) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is Mo(IV)((A)L(3)(5-•)) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as Mo(V)((B)L(3)(6-)) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound W(bdt)(3) exhibits spin-Hamiltonian parameters similar to those of Mo(bdt)(3) and thus is formulated as W(V)((B)L(3)(6-)). The EPR spectra of W((A)L(3)) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {W(IV)((A)L(3)(5-•)) ↔ W(V)((A)L(3)(6-))}. The contrast with the corresponding Mo(IV)((A)L(3)(5-•)) complexes highlights tungsten's preference for higher oxidation states.
已经制备了许多处于不同氧化还原态的 Mo 和 W 三(二硫烯)配合物,并通过晶体学方法对代表性实例进行了表征:M(S(2)C(2)R(2))(3) [M = Mo,R = Ph,z = 0(1)或 1-(2);M = W,R = Ph,z = 0(4)或 1-(5);R = CN,z = 2-,M = Mo(3)或 W(6)]。1 与 2 和 4 与 5 相比,二硫烯 C-S 和 C-C 键长的变化表明配体还原。对于 2 与 1、5 与 4,三角扭曲角 (Θ) 和二硫烯折叠角 (α) 分别增加和减小。循环伏安法通常揭示对应于 0/1-和 1-/2-还原的两个可逆对。通过多频(S-、X-、Q-带)EPR 光谱分析了单核阴离子钼三(二硫烯)配合物的电子结构。光谱模拟提供的自旋哈密顿参数表明每个配合物都存在两种独特的电子结构类型。第一种是Mo(IV)((A)L(3)(5-•)) ((A)L = 烯烃二硫烯,类型 A),其中未配对电子仅限于三(二硫烯)单元,其特征为各向同性 g 值和较小的钼超精细耦合。第二种是Mo(V)((B)L(3)(6-)),表示为 Mo(V)((B)L(3)(6-)),其特征是谱图具有明显的 g 各向异性和与 (d(z(2)))(1) 顺磁体一致的超精细耦合。电子结构的差异也表现在它们的电子吸收光谱中。化合物 W(bdt)(3) 表现出与 Mo(bdt)(3) 相似的自旋哈密顿参数,因此表示为 W(V)((B)L(3)(6-))。W((A)L(3))的 EPR 谱显示出自旋哈密顿参数,表明其电子结构最好用两个共振形式{W(IV)((A)L(3)(5-•))↔W(V)((A)L(3)(6-))表示。与相应的 Mo(IV)((A)L(3)(5-•)) 配合物形成对比,突出了钨对更高氧化态的偏好。