Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, CNRS - Nancy-University, France.
Bioelectrochemistry. 2011 Aug;82(1):46-54. doi: 10.1016/j.bioelechem.2011.05.002. Epub 2011 May 25.
Complexes of the (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium family (Cp*Rh(bpy)Cl, which is actually hydrolyzed in the form of Cp*Rh(bpy)H(2)O in aqueous medium) are suitable solution-phase mediators likely to regenerate nicotinamide cofactors associated to dehydrogenases involved in many biocatalytic applications. Their practical application as bioelectrocatalysts, e.g., in fine chemicals synthesis or biosensors, remains however restricted to their durable immobilization in an active form onto solid electrode surfaces. This paper reports some new observations on the electrocatalytic properties of this mediator towards NAD(+) reduction, notably the critical effect of pH and cofactor-to-mediator concentration ratio, and investigates the behavior of a series of (Cp*Rh(bpy)Cl) derivatives bearing various substituents on the bipyridine ligand in view of their subsequent integration in electrochemical bioreactors. It will be shown that such compounds containing S- or N- moieties (i.e., often used as precursors to functionalize electrode surfaces) lead to inactivation of the electrocatalyst because their interaction with the Rh center prevents the formation of the active rhodium hydride complex. It was thus necessary to find another strategy of immobilization, and we found that adsorption of Cp*Rh(bpy)Cl by π-stacking on single-walled carbon nanotubes is an effective mean to reach this goal, leading to efficient and stable catalytic responses for NAD(+) reduction. Preliminary electroenzymatic experiments in the presence of d-sorbitol dehydrogenase further point out the interest of this approach for bioelectrocatalysis purposes and provide the proof-of-concept for this immobilization strategy.
(2,2'-联吡啶)(五甲基环戊二烯基)-铑配合物家族(Cp*Rh(bpy)Cl,实际上在水介质中以Cp*Rh(bpy)H(2)O的形式水解)是合适的溶液相介体,可能会再生与脱氢酶相关的烟酰胺辅因子,这些脱氢酶参与许多生物催化应用。然而,它们作为生物电化学催化剂的实际应用,例如在精细化学品合成或生物传感器中,仍然受到限制,因为它们需要以活性形式持久地固定在固体电极表面上。本文报道了该介体对 NAD(+)还原的电催化性质的一些新观察结果,特别是 pH 和辅因子-介体浓度比的关键影响,并研究了一系列在联吡啶配体上带有各种取代基的Cp*Rh(bpy)Cl衍生物的行为,以便随后将其整合到电化学生物反应器中。结果表明,这些含有 S 或 N 部分的化合物(即通常用作修饰电极表面的前体)会导致电催化剂失活,因为它们与 Rh 中心的相互作用阻止了活性铑氢配合物的形成。因此,有必要寻找另一种固定化策略,我们发现Cp*Rh(bpy)Cl通过π堆积吸附在单壁碳纳米管上是实现这一目标的有效手段,从而对 NAD(+)还原产生高效稳定的催化响应。在 d-山梨糖醇脱氢酶存在下的初步酶电化学实验进一步指出了这种方法在生物电化学催化中的应用的意义,并为这种固定化策略提供了概念验证。