Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
ACS Nano. 2011 Jul 26;5(7):5976-86. doi: 10.1021/nn2017588. Epub 2011 Jul 1.
The plasmon coupling between metal nanocrystals can lead to large plasmon shifts, enormous electric field enhancements, and new plasmon modes. Metal nanorods, unlike spherical ones, possess a transverse and a longitudinal plasmon mode owing to their geometrical anisotropy. Consequently, the plasmon coupling between metal nanorods is much more complicated than that between nanospheres. For the latter, experimental approaches, simple scaling relationships, and exact analytic solutions have been developed for describing the plasmon coupling. In this study, we have carried out extensive finite-difference time-domain simulations to understand the plasmon coupling in the dimers of Au nanorods that are aligned along their length axes. The effects of the gap distance, longitudinal plasmon energy, and end shape of the nanorod monomers on the plasmon coupling have been scrutinized. The coupling energy diagrams show a general anticrossing behavior. All of them can be rescaled into one simple and universal hyperbolic formula. A theoretical model based on two interacting mechanical oscillators has been developed to understand the plasmon coupling between two arbitrarily varying Au nanorods. This model, together with the universal equation, allows for the determination of the coupled plasmon energies of Au nanorod dimers with high accuracies. Furthermore, the Fano interference has been observed in the nanorod heterodimers, with its behavior being dependent on the gap distance and plasmon energies of the nanorod monomers. Our results will be useful for predicting the coupled plasmon energies of metal nanorod dimers in a variety of plasmonic applications and understanding the Fano resonance in plasmonic nanostructures.
金属纳米晶之间的等离子体耦合会导致较大的等离子体位移、巨大的电场增强和新的等离子体模式。与球形纳米晶不同,金属纳米棒由于其几何各向异性而具有横向和纵向等离子体模式。因此,金属纳米棒之间的等离子体耦合比纳米球之间的耦合复杂得多。对于后者,已经开发了实验方法、简单的标度关系和精确的解析解,用于描述等离子体耦合。在这项研究中,我们进行了广泛的时域有限差分模拟,以了解沿其长度轴排列的 Au 纳米棒二聚体中的等离子体耦合。研究了间隙距离、纵向等离子体能量和纳米棒单体的末端形状对等离子体耦合的影响。耦合能图显示出一般的反交叉行为。所有这些都可以缩放到一个简单而通用的双曲公式中。已经开发了一个基于两个相互作用的机械振荡器的理论模型,以理解两个任意变化的 Au 纳米棒之间的等离子体耦合。该模型与通用方程一起,可以高精度地确定 Au 纳米棒二聚体的耦合等离子体能量。此外,在纳米棒异质二聚体中观察到了 Fano 干涉,其行为取决于纳米棒单体的间隙距离和等离子体能量。我们的研究结果将有助于预测各种等离子体应用中金属纳米棒二聚体的耦合等离子体能量,并理解等离子体纳米结构中的 Fano 共振。