Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
Eur J Med Chem. 2011 Sep;46(9):3953-63. doi: 10.1016/j.ejmech.2011.05.067. Epub 2011 Jun 23.
Cytochrome P450 enzymes are responsible for metabolizing many endogenous and xenobiotic molecules encountered by the human body. It has been estimated that 75% of all drugs are metabolized by cytochrome P450 enzymes. Thus, predicting a compound's potential sites of metabolism (SOM) is highly advantageous early in the drug development process. We have combined molecular dynamics, AutoDock Vina docking, the neighboring atom type (NAT) reactivity model, and a solvent-accessible surface-area term to form a reactivity-accessibility model capable of predicting SOM for cytochrome P450 2C9 substrates. To investigate the importance of protein flexibility during the ligand-binding process, the results of SOM prediction using a static protein structure for docking were compared to SOM prediction using multiple protein structures in ensemble docking. The results reported here indicate that ensemble docking increases the number of ligands that can be docked in a bioactive conformation (ensemble: 96%, static: 85%) but only leads to a slight improvement (49% vs. 44%) in predicting an experimentally known SOM in the top-1 position for a ligand library of 75 CYP2C9 substrates. Using ensemble docking, the reactivity-accessibility model accurately predicts SOM in the top-1 ranked position for 49% of the ligand library and considering the top-3 predicted sites increases the prediction success rate to approximately 70% of the ligand library. Further classifying the substrate library according to K(m) values leads to an improvement in SOM prediction for substrates with low K(m) values (57% at top-1). While the current predictive power of the reactivity-accessibility model still leaves significant room for improvement, the results illustrate the usefulness of this method to identify key protein-ligand interactions and guide structural modifications of the ligand to increase its metabolic stability.
细胞色素 P450 酶负责代谢人体遇到的许多内源性和外源性分子。据估计,所有药物中有 75%是由细胞色素 P450 酶代谢的。因此,在药物开发过程的早期预测化合物的潜在代谢部位(SOM)是非常有利的。我们将分子动力学、AutoDock Vina 对接、邻原子类型(NAT)反应性模型和溶剂可及表面积项结合起来,形成了一种能够预测细胞色素 P450 2C9 底物 SOM 的反应性-可及性模型。为了研究在配体结合过程中蛋白质灵活性的重要性,我们将使用静态蛋白质结构进行对接的 SOM 预测结果与使用多个蛋白质结构进行集合对接的 SOM 预测结果进行了比较。这里报告的结果表明,集合对接增加了可以以生物活性构象对接的配体数量(集合:96%,静态:85%),但仅导致预测实验已知 SOM 的能力略有提高(49%对 44%)在 75 种 CYP2C9 底物的配体库中排名第一的位置。使用集合对接,反应性-可及性模型可以准确地预测配体库中排名第一的 SOM 位置,对于 49%的配体库,考虑排名前三的预测位点可以将预测成功率提高到大约 70%的配体库。根据 K(m)值进一步对底物库进行分类,可以提高低 K(m)值底物的 SOM 预测(排名第一的位置为 57%)。虽然目前反应性-可及性模型的预测能力仍有很大的改进空间,但结果表明,该方法可用于识别关键的蛋白质-配体相互作用,并指导配体的结构修饰以提高其代谢稳定性。