Suppr超能文献

基于信息论学习的分类器在微阵列数据集上的性能研究。

A study of performance on microarray data sets for a classifier based on information theoretic learning.

机构信息

Department of Computer Science, Facultade de Informática, Campus de Elviña s/n, University of A Coruña, Spain.

出版信息

Neural Netw. 2011 Oct;24(8):888-96. doi: 10.1016/j.neunet.2011.05.010. Epub 2011 Jun 12.

Abstract

Gene-expression microarray is a novel technology that allows the examination of tens of thousands of genes at a time. For this reason, manual observation is not feasible and machine learning methods are progressing to face these new data. Specifically, since the number of genes is very high, feature selection methods have proven valuable to deal with these unbalanced-high dimensionality and low cardinality-data sets. In this work, the FVQIT (Frontier Vector Quantization using Information Theory) classifier is employed to classify twelve DNA gene-expression microarray data sets of different kinds of cancer. A comparative study with other well-known classifiers is performed. The proposed approach shows competitive results outperforming all other classifiers.

摘要

基因表达微阵列是一种新颖的技术,可以一次检测数万个基因。因此,手动观察是不可行的,机器学习方法正在不断发展以应对这些新数据。具体来说,由于基因数量非常高,特征选择方法已被证明对处理这些不平衡的高维度和低基数数据集非常有效。在这项工作中,使用 FVQIT(使用信息论的前沿向量量化)分类器对 12 个不同类型癌症的 DNA 基因表达微阵列数据集进行分类。与其他著名分类器进行了比较研究。所提出的方法显示出竞争结果,优于所有其他分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验