Suppr超能文献

用于癌症微阵列数据分类的分层基因选择与遗传模糊系统

Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.

作者信息

Nguyen Thanh, Khosravi Abbas, Creighton Douglas, Nahavandi Saeid

机构信息

Centre for Intelligent Systems Research (CISR), Deakin University, Geelong Waurn Ponds Campus, Victoria, 3216, Australia.

出版信息

PLoS One. 2015 Mar 30;10(3):e0120364. doi: 10.1371/journal.pone.0120364. eCollection 2015.

Abstract

This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

摘要

本文介绍了一种基于层次分析法(AHP)重大改进的基因选择新方法。改进后的AHP系统地整合了各个过滤方法的结果,以选择用于微阵列分类的最具信息性的基因。采用包括t检验、熵、受试者工作特征(ROC)曲线、威尔科克森法和信噪比在内的五种个体排序方法对基因进行排序。然后将这些排序后的基因作为改进后AHP的输入。此外,本文还提出了一种基于AHP选择的基因,使用模糊标准加法模型(FSAM)进行癌症分类的方法。传统的FSAM学习是一个包括无监督结构学习和有监督参数调整的混合过程。遗传算法(GA)被纳入无监督和有监督训练之间,以优化模糊规则的数量。GA的整合使FSAM能够处理微阵列数据的高维低样本特性,从而提高分类效率。在众多微阵列数据集上进行了实验。结果表明,基于AHP的基因选择相对于单一排序方法具有性能优势。此外,与各种竞争分类器相比,AHP-FSAM的组合在微阵列数据分类中显示出很高的准确性。因此,所提出的方法对于医学从业者和临床医生来说是一个有用的决策支持系统,可以在实际医疗实践中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe92/4378968/1b149aa13c65/pone.0120364.g001.jpg

相似文献

1
Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
PLoS One. 2015 Mar 30;10(3):e0120364. doi: 10.1371/journal.pone.0120364. eCollection 2015.
3
Fuzzy logic for elimination of redundant information of microarray data.
Genomics Proteomics Bioinformatics. 2008 Jun;6(2):61-73. doi: 10.1016/S1672-0229(08)60021-2.
4
Tumor classification ranking from microarray data.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S21. doi: 10.1186/1471-2164-9-S2-S21.
5
Hybrid Framework Using Multiple-Filters and an Embedded Approach for an Efficient Selection and Classification of Microarray Data.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Jan-Feb;13(1):12-26. doi: 10.1109/TCBB.2015.2474384. Epub 2015 Aug 28.
6
Recursive fuzzy granulation for gene subsets extraction and cancer classification.
IEEE Trans Inf Technol Biomed. 2008 Nov;12(6):723-30. doi: 10.1109/TITB.2008.920787.
7
Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers.
Biosystems. 2007 Jul-Aug;90(1):78-86. doi: 10.1016/j.biosystems.2006.07.002. Epub 2006 Jul 10.
8
An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer.
Artif Intell Med. 2008 Jan;42(1):81-93. doi: 10.1016/j.artmed.2007.09.004. Epub 2007 Nov 19.
9
Hybrid Ant Bee Algorithm for Fuzzy Expert System Based Sample Classification.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):347-60. doi: 10.1109/TCBB.2014.2307325.

引用本文的文献

1
Deep learning-based microarray cancer classification and ensemble gene selection approach.
IET Syst Biol. 2022 May;16(3-4):120-131. doi: 10.1049/syb2.12044. Epub 2022 Jul 4.
3
A novel feature ranking method for prediction of cancer stages using proteomics data.
PLoS One. 2017 Sep 21;12(9):e0184203. doi: 10.1371/journal.pone.0184203. eCollection 2017.

本文引用的文献

2
MIDClass: microarray data classification by association rules and gene expression intervals.
PLoS One. 2013 Aug 6;8(8):e69873. doi: 10.1371/journal.pone.0069873. Print 2013.
3
Investigating topic models' capabilities in expression microarray data classification.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1831-6. doi: 10.1109/TCBB.2012.121.
4
On the classification of microarray gene-expression data.
Brief Bioinform. 2013 Jul;14(4):402-10. doi: 10.1093/bib/bbs056. Epub 2012 Sep 17.
5
Biomarker identification and cancer classification based on microarray data using Laplace naive Bayes model with mean shrinkage.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1649-62. doi: 10.1109/TCBB.2012.105.
6
Microarray-based cancer prediction using single genes.
BMC Bioinformatics. 2011 Oct 7;12:391. doi: 10.1186/1471-2105-12-391.
7
Improving cancer classification accuracy using gene pairs.
PLoS One. 2010 Dec 21;5(12):e14305. doi: 10.1371/journal.pone.0014305.
8
A comparative analysis of gene-expression data of multiple cancer types.
PLoS One. 2010 Oct 27;5(10):e13696. doi: 10.1371/journal.pone.0013696.
9
A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):108-17. doi: 10.1109/TCBB.2008.46.
10
Ensemble gene selection by grouping for microarray data classification.
J Biomed Inform. 2010 Feb;43(1):81-7. doi: 10.1016/j.jbi.2009.08.010. Epub 2009 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验