Suppr超能文献

基于结构的可药性评估——确定小分子治疗药物的合适靶点。

Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics.

机构信息

Computational Sciences Center of Emphasis, Pfizer Worldwide Research and Development, Cambridge, MA, United States.

出版信息

Curr Opin Chem Biol. 2011 Aug;15(4):463-8. doi: 10.1016/j.cbpa.2011.05.020. Epub 2011 Jun 23.

Abstract

A target is druggable if it can be modulated in vivo by a drug-like molecule. The general properties of oral drugs are summarized by the 'rule of 5' which specifies parameters related to size and lipophilicity. Structure-based target druggability assessment consists of predicting ligand-binding sites on the protein that are complementary to these drug-like properties. Automated identification of ligand-binding sites can use geometrical considerations alone or include specific physicochemical properties of the protein surface. Features of a pocket's size and shape, together with measures of its hydrophobicity, are most informative in identifying suitable drug-binding pockets. The recent availability of several validation sets of druggable versus undruggable targets has helped fuel the development of more elaborate methods.

摘要

如果一种药物类似分子可以在体内调节某个靶标,那么这个靶标就是可成药的。口服药物的一般特性可以用“五规则”来概括,它规定了与大小和亲脂性相关的参数。基于结构的靶标可成药性评估包括预测与这些药物类似特性互补的蛋白质上的配体结合位点。配体结合位点的自动识别可以仅使用几何考虑因素,也可以包括蛋白质表面的特定物理化学特性。口袋的大小和形状的特征,以及其疏水性的度量,在识别合适的药物结合口袋方面最具信息量。最近有几个可成药与不可成药靶标的验证集的可用性,有助于推动更精细方法的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验