Suppr超能文献

基于规则的蛋白质成药性评估方法的开发。

Development of a rule-based method for the assessment of protein druggability.

机构信息

Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139, United States.

出版信息

J Chem Inf Model. 2012 Apr 23;52(4):1027-38. doi: 10.1021/ci200613b. Epub 2012 Apr 9.

Abstract

Target selection is a critical step in the majority of modern drug discovery programs. The viability of a drug target depends on two components: biological relevance and chemical tractability. The concept of druggability was introduced to describe the second component, and it is defined as the ability of a target to bind a drug-like molecule with a therapeutically useful level of affinity. To investigate the rules that govern druggability, we developed an algorithm to isolate and characterize the binding pockets of protein targets. Using this algorithm, we performed a comparative analysis between the relevant pockets of 60 targets of approved drugs and a diverse set of 440 ligand-binding pockets. As a result, we defined a preferred property space for druggable pockets based on five key properties (volume, depth, enclosure, percentage of charged residues and hydrophobicity), and we represented it with a set of simple rules. These rules may be applicable in the future to evaluate the chemical tractability of prospective targets.

摘要

目标选择是大多数现代药物发现计划的关键步骤。药物靶点的可行性取决于两个组成部分:生物学相关性和化学可及性。可成药性的概念被引入来描述第二个组成部分,它被定义为目标与具有治疗有用亲和力水平的类药分子结合的能力。为了研究控制可成药性的规则,我们开发了一种算法来分离和描述蛋白质靶标的结合口袋。使用该算法,我们对 60 个已批准药物的相关口袋和 440 个不同配体结合口袋进行了比较分析。结果,我们基于五个关键特性(体积、深度、封闭性、带电荷残基的百分比和疏水性)为可成药口袋定义了一个优选的属性空间,并通过一组简单的规则来表示。这些规则将来可能适用于评估潜在靶标的化学可及性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验