Suppr超能文献

利用易于获得的临床信息,开发改良的列线图以预测初始前列腺活检的结果。

Development of improved nomogram for prediction of outcome of initial prostate biopsy using readily available clinical information.

机构信息

Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

Urology. 2011 Aug;78(2):392-8. doi: 10.1016/j.urology.2011.04.042. Epub 2011 Jun 25.

Abstract

OBJECTIVES

To construct a nomogram that can be used to estimate the risk of prostate cancer (PCa) and high-grade PCa using readily available clinical information for men undergoing initial extended prostate biopsy (PBx). Many nomograms have been developed to predict the outcome of initial PBx. However, most require information not available at the decision to biopsy.

METHODS

From March 2000 to April 2010, 1551 men with a prostate-specific antigen (PSA) of ≤10 ng/mL who underwent initial extended PBx were included in the present study. The nomogram predictor variables were patient age, race, prostate-specific antigen (PSA) level, percent free PSA, family history of PCa, and the digital rectal examination findings. The area under the receiver operating characteristic curve was calculated as a measure of discrimination. The calibration was assessed graphically.

RESULTS

Of the 1551 men, 606 (39.1%) had PCa on biopsy. The mean value for age, PSA, and percent free PSA was 63.4 years, 5.1 ng/mL, and 21.4%, respectively. Also, 25.1% and 7.8% of patients with positive PBx findings had digital rectal examination abnormalities and a positive family history, respectively. The univariate and multivariate analyses suggested that all 6 risk factors were predictors of PCa in the study cohort (P < .05). The area under the curve for all factors in a model predicting PCa was 0.73 (95% confidence interval 0.71-0.76). The area under the curve for predicting high-grade PCa was 0.71 (95% confidence interval 0.69-0.74).

CONCLUSIONS

The present predictive model allows an assessment of the risk of PCa and high-grade PCa for men undergoing initial extended PBx using readily available, noninvasively obtained clinical data.

摘要

目的

构建一个列线图,用于估计接受初次扩展前列腺活检(PBx)的男性前列腺癌(PCa)和高级别 PCa 的风险。已经开发了许多列线图来预测初次 PBx 的结果。然而,大多数需要在活检决策时无法获得的信息。

方法

本研究纳入了 2000 年 3 月至 2010 年 4 月期间,1551 名 PSA 水平≤10ng/ml 的男性,他们接受了初次扩展 PBx。列线图预测变量包括患者年龄、种族、前列腺特异性抗原(PSA)水平、游离 PSA 百分比、PCa 家族史和直肠指检结果。通过计算接收者操作特征曲线下的面积来衡量判别力。通过图形评估校准。

结果

在 1551 名男性中,606 名(39.1%)在活检中发现了 PCa。年龄、PSA 和游离 PSA 的平均值分别为 63.4 岁、5.1ng/ml 和 21.4%。此外,阳性 PBx 结果的患者中有 25.1%和 7.8%分别存在直肠指检异常和阳性家族史。单变量和多变量分析表明,研究队列中的所有 6 个危险因素都是 PCa 的预测因素(P<.05)。预测 PCa 的所有因素模型的曲线下面积为 0.73(95%置信区间 0.71-0.76)。预测高级别 PCa 的曲线下面积为 0.71(95%置信区间 0.69-0.74)。

结论

本预测模型允许使用易于获得的非侵入性临床数据评估接受初次扩展 PBx 的男性 PCa 和高级别 PCa 的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验