Computer-Assisted Surgery Laboratory and Sports Medicine and Shoulder Surgery Service, Hospital for Special Surgery, New York, New York, USA.
Arthroscopy. 2011 Nov;27(11):1543-51. doi: 10.1016/j.arthro.2011.03.079. Epub 2011 Jun 25.
To determine whether (1) increased graft size with anatomic anterior cruciate ligament reconstruction (ACLR) would confer proportionally increased time-zero biomechanical stability and (2) larger grafts would compensate for the inferior time-zero biomechanical kinematics of nonanatomic, single-bundle ACLR.
Ten cadaveric knees were allocated for single-bundle ACLR in an anatomic, center-center or nonanatomic, posterolateral-to-anteromedial footprint position with hamstring autograft. Medial arthrotomy defined the native anterior cruciate ligament (ACL) tibial and femoral footprints. ACLR was performed with a 6-mm semitendinosus graft in 6-mm tunnels and repeated with a 9-mm semitendinosus and gracilis graft in 9-mm tunnels for each knee. Lachman and instrumented pivot-shift examinations assessed knee stability in the ACL-intact, ACL-deficient, and ACLR conditions. Medial and lateral meniscectomies after ACL transection created reproducible pivot shifts. Significance was defined as P < .05.
ACLR in the center-center or posterolateral-to-anteromedial position significantly reduced anterior tibial translation compared with the ACL- and meniscus-deficient conditions (P < .001). Larger graft size, however, did not significantly improve time-zero biomechanical stability compared with a smaller graft in the same position for either reconstruction (P = .41 to .74). A center-center ACLR controlled tibial translation significantly better than a nonanatomic graft position regardless of graft size (P < .001). A smaller graft in the anatomic position controlled tibial translation significantly better than a larger graft in a nonanatomic position (P < .001).
This study showed that increasing graft size did not improve the time-zero biomechanical stability of the knee after ACLR. Increased graft size did not compensate for the biomechanical instability documented with the nonanatomic tunnel position. Restoration of native footprint anatomy in ACLR is of paramount importance regardless of graft size and source.
A larger graft size does not ameliorate the inferior time-zero biomechanics associated with nonanatomic tunnel preparation during single-bundle ACLR.
确定(1)解剖前交叉韧带重建(ACLR)中增加移植物大小是否会带来相应的即刻生物力学稳定性增加,以及(2)较大的移植物是否会补偿非解剖、单束 ACLR 的即刻生物力学运动学的劣势。
10 个尸体膝关节被分配用于解剖中心中心或非解剖后外侧到前内侧足迹位置的 ACLR,使用腘绳肌腱自体移植物。内侧关节切开术定义了前交叉韧带(ACL)胫骨和股骨的固有足迹。ACLR 使用 6 毫米半腱肌腱移植物在 6 毫米隧道中进行,并在每个膝关节中使用 9 毫米半腱肌腱和股薄肌移植物在 9 毫米隧道中重复进行。Lachman 和仪器化枢轴转移检查评估 ACL 完整、ACL 缺失和 ACLR 条件下的膝关节稳定性。ACL 切断后的内侧和外侧半月板切除术可产生可重复的枢轴转移。定义显著性为 P <.05。
中心中心或后外侧到前内侧位置的 ACLR 与 ACL 和半月板缺失状态相比,显著降低了胫骨前向平移(P <.001)。然而,对于相同位置的重建,较大的移植物大小并没有显著提高即刻生物力学稳定性,而较小的移植物则没有(P =.41 至.74)。中心中心 ACLR 比非解剖移植物位置更好地控制胫骨平移(P <.001)。解剖位置的较小移植物比非解剖位置的较大移植物更好地控制胫骨平移(P <.001)。
本研究表明,增加移植物大小并不能改善 ACLR 后膝关节的即刻生物力学稳定性。增加移植物大小并不能补偿非解剖隧道位置记录的生物力学不稳定性。无论移植物大小和来源如何,ACLR 中恢复固有足迹解剖结构至关重要。
在单束 ACLR 中,较大的移植物大小并不能改善与非解剖隧道准备相关的即刻生物力学劣势。