Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
Dalton Trans. 2011 Aug 7;40(29):7571-82. doi: 10.1039/c1dt10493d. Epub 2011 Jun 27.
Recently synthesized by the group of Sadler, the platinum(IV) diazido complexes [Pt(N(3))(2)(OH)(2)(L')(L'')] (L' and L'' are N-donor ligands) have potential to be used as photoactivatable metallodrugs in cancer chemotherapy. In the present study optimized structures and UV-Vis electronic spectra of trans,trans,trans- and cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] (1t and 1c, respectively) as well as cis,trans,cis-[Pt(N(3))(2)(OH)(2)(L)(2)] (L = NH(3), NH(2)CH(3), NF(3), PH(3), PF(3), H(2)O, CO, OH(-), CN(-), py, imid; 2c-11c) and cis,trans-[Pt(N(3))(2)(OH)(2)(bpy)] (12c) complexes were predicted using density functional theory (DFT). The ground state electronic structures of all complexes were analyzed with the help of the natural bond orbital analysis (NBO). The electronic spectra of 1c and 1t were computed using time-dependent density functional theory (TDDFT) with five different density functionals and the ab initio CASSCF/CASPT2 method (for the five lowest energy transitions). The best agreement with available experiments was found in the case of the long-range corrected ωB97X functional. The electronic transitions were characterized by the analysis of the natural transition orbitals (NTO). The low-lying excited singlet states of 1t and 1c have significant azide-to-platinum(IV) charge-transfer character (LMCT). Geometry optimization of the three lowest singlet excited states performed using TDDFT results in the simultaneous dissociation of two azide ligands with the formation of the azidyl radicals N(3)˙ and photoreduction of Pt(IV) to Pt(II). Variation of the ligand L does not strongly affect the nature and the relative energies of the low-lying states. It is shown that the replacement of the OH(-) groups in 1c by OPh(-) ligands results in the red shift of the intense N(3)(-)→Pt LMCT band and the appearance of transitions with significant intensity in the visible region of the spectrum. The dissociative nature of the low-lying unoccupied orbitals remains unaffected. These theoretical results may suggest new experimental routes for the improvement of the photochemical activity of Pt(IV) diazido complexes.
最近,萨德勒小组合成了铂(IV)叠氮配合物[Pt(N(3))(2)(OH)(2)(L')(L'')](L'和 L''是 N-供体配体),它们有可能被用作癌症化疗中的光激活金属药物。在本研究中,优化了 trans,trans,trans-和 cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)](1t 和 1c,分别)以及 cis,trans,cis-[Pt(N(3))(2)(OH)(2)(L)(2)](L = NH(3),NH(2)CH(3),NF(3),PH(3),PF(3),H(2)O,CO,OH(-),CN(-),py,imid; 2c-11c)和 cis,trans-[Pt(N(3))(2)(OH)(2)(bpy)](12c)配合物的结构和 UV-Vis 电子光谱使用密度泛函理论(DFT)进行了预测。利用自然键轨道分析(NBO)对所有配合物的基态电子结构进行了分析。使用时变密度泛函理论(TDDFT)和从头算 CASSCF/CASPT2 方法(用于五个最低能量跃迁)计算了 1c 和 1t 的电子光谱。在长程修正的 ωB97X 函数的情况下,与可用实验结果的吻合度最好。电子跃迁通过自然跃迁轨道(NTO)的分析来表征。1t 和 1c 的低激发单重态具有显著的叠氮化物到铂(IV)的电荷转移特征(LMCT)。使用 TDDFT 结果对三个最低单重激发态的几何优化导致两个叠氮化物配体的同时解离,形成叠氮自由基 N(3)˙并将 Pt(IV)还原为 Pt(II)。配体 L 的变化不会强烈影响低能态的性质和相对能量。结果表明,用 OPh(-)取代 1c 中的 OH(-)基团会导致强烈的 N(3)(-)→Pt LMCT 带的红移,并在光谱的可见区域出现具有显著强度的跃迁。低占据轨道的离解性质保持不变。这些理论结果可能为改善铂(IV)叠氮配合物的光化学活性提供新的实验途径。