Suppr超能文献

基于理性变分映射的未染色标本多光谱图像增强型非线性无监督分割。

Rational variety mapping for contrast-enhanced nonlinear unsupervised segmentation of multispectral images of unstained specimen.

机构信息

Division of Laser and Atomic Research and Development, Ruđer Bošković Institute, Zagreb, Croatia.

出版信息

Am J Pathol. 2011 Aug;179(2):547-54. doi: 10.1016/j.ajpath.2011.05.010. Epub 2011 Jun 25.

Abstract

A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens.

摘要

提出了一种用于主要未经染色标本的多光谱(彩色)显微镜图像的非线性对比增强无监督分割的方法。该方法利用光谱多样性和空间稀疏性来发现图像中存在的材料(细胞、核和背景)之间的解剖差异。它由 rth 阶有理变分映射 (RVM) followed by 矩阵/张量分解组成。稀疏性约束意味着非线性无监督分割和多类模式分配问题之间的对偶性。在原始输入空间中不可线性分离的类在更高维映射空间中具有高概率变得可分离。因此,RVM 映射具有两个优点:它隐式地考虑了图像中存在的非线性(即,不需要知道它们),并且由于映射空间的维数增加,它增加了材料之间的光谱多样性(即对比度)。这有望提高用于自动分类和分析微观组织病理学图像的系统的性能。该方法使用未经染色坐骨神经纤维(nervus ischiadicus)和脾组织中未经染色的白髓的实验多光谱显微镜图像的二阶和三阶 RVM 进行了验证,与由两名训练有素的病理生理学家手动定义的地面真实标签进行了比较。该方法还可用于增强染色标本图像的对比度。

相似文献

1
Rational variety mapping for contrast-enhanced nonlinear unsupervised segmentation of multispectral images of unstained specimen.
Am J Pathol. 2011 Aug;179(2):547-54. doi: 10.1016/j.ajpath.2011.05.010. Epub 2011 Jun 25.
4
Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.
Med Image Anal. 2017 May;38:90-103. doi: 10.1016/j.media.2017.02.009. Epub 2017 Mar 6.
5
Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
Artif Intell Med. 2012 Mar;54(3):189-200. doi: 10.1016/j.artmed.2011.11.008. Epub 2012 Jan 11.
7
Embedding topic discovery in conditional random fields model for segmenting nuclei using multispectral data.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1539-49. doi: 10.1109/TBME.2012.2188892. Epub 2012 Feb 24.
8
A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
J Microsc. 2020 Aug;279(2):114-122. doi: 10.1111/jmi.12924. Epub 2020 Jun 5.

引用本文的文献

1
Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited].
Biomed Opt Express. 2020 May 21;11(6):3195-3233. doi: 10.1364/BOE.386338. eCollection 2020 Jun 1.

本文引用的文献

1
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.
J Photochem Photobiol B. 2010 Jul 2;100(1):10-8. doi: 10.1016/j.jphotobiol.2010.03.013. Epub 2010 Apr 3.
2
Blind multispectral image decomposition by 3D nonnegative tensor factorization.
Opt Lett. 2009 Jul 15;34(14):2210-2. doi: 10.1364/OL.34.002210.
3
Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation.
Med Image Anal. 2009 Jun;13(3):507-18. doi: 10.1016/j.media.2009.02.002. Epub 2009 Feb 20.
4
Automated quantitative assessment of HER-2/neu immunohistochemical expression in breast cancer.
IEEE Trans Med Imaging. 2009 Jun;28(6):916-25. doi: 10.1109/TMI.2009.2012901. Epub 2009 Jan 19.
6
Automatic active model initialization via Poisson inverse gradient.
IEEE Trans Image Process. 2008 Aug;17(8):1406-20. doi: 10.1109/TIP.2008.925375.
7
Active contour external force using vector field convolution for image segmentation.
IEEE Trans Image Process. 2007 Aug;16(8):2096-106. doi: 10.1109/tip.2007.899601.
8
Supervised learning-based cell image segmentation for p53 immunohistochemistry.
IEEE Trans Biomed Eng. 2006 Jun;53(6):1153-63. doi: 10.1109/TBME.2006.873538.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验