Li Bing, Acton Scott T
C. L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
IEEE Trans Image Process. 2007 Aug;16(8):2096-106. doi: 10.1109/tip.2007.899601.
Snakes, or active contours, have been widely used in image processing applications. Typical roadblocks to consistent performance include limited capture range, noise sensitivity, and poor convergence to concavities. This paper proposes a new external force for active contours, called vector field convolution (VFC), to address these problems. VFC is calculated by convolving the edge map generated from the image with the user-defined vector field kernel. We propose two structures for the magnitude function of the vector field kernel, and we provide an analytical method to estimate the parameter of the magnitude function. Mixed VFC is introduced to alleviate the possible leakage problem caused by choosing inappropriate parameters. We also demonstrate that the standard external force and the gradient vector flow (GVF) external force are special cases of VFC in certain scenarios. Examples and comparisons with GVF are presented in this paper to show the advantages of this innovation, including superior noise robustness, reduced computational cost, and the flexibility of tailoring the force field.
蛇形模型,即活动轮廓模型,已在图像处理应用中得到广泛使用。影响其性能一致性的典型障碍包括捕获范围有限、对噪声敏感以及向凹面收敛性差。本文提出了一种用于活动轮廓的新外力,称为矢量场卷积(VFC),以解决这些问题。VFC是通过将从图像生成的边缘图与用户定义的矢量场核进行卷积来计算的。我们提出了两种矢量场核幅值函数的结构,并提供了一种估计幅值函数参数的解析方法。引入混合VFC以减轻因选择不当参数而可能导致的泄漏问题。我们还证明了标准外力和梯度矢量流(GVF)外力在某些情况下是VFC的特殊情况。本文给出了示例并与GVF进行了比较,以展示这一创新的优势,包括卓越的噪声鲁棒性、降低的计算成本以及定制力场的灵活性。