National Aeronautics and Space Administration Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19165-70. doi: 10.1073/pnas.1013480108. Epub 2011 Jun 27.
Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.
我们对类地行星形成的理解的进展来自多学科的方法。研究具有与太阳相似成分的原始陨石的年龄和成分有助于约束行星的组成部分的性质。这些信息有助于指导从尘埃到星子(~10^6 年)、星子到胚胎(月球到火星大小的物体;很少有 10^6 年)和胚胎到行星(10^7-10^8 年)三个阶段的行星形成的数值模型。确定湍流在早期星云中的作用是理解大于米级大小的固体增长的关键。星子中胚胎的失控生长的启动最终导致通过大撞击来生长大型的类地行星。动力学模型可以产生与我们的太阳系非常相似的内太阳系构型,特别是当包括大行星(木星和土星)的轨道效应和阻尼机制(如气体阻力)时。对地球行星内部的实验研究为分化条件提供了额外的约束,因此也为起源提供了额外的约束。通过化学和物理建模的结合,以及从其他行星(金星、火星或水星)和小行星获得样本和新的地球物理数据,可能会对类地行星的形成有更全面的了解。