Fan Juanjuan, Nunn Martha E, Su Xiaogang
Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA.
Comput Stat Data Anal. 2009 Feb 15;53(4):1110-1121. doi: 10.1016/j.csda.2008.10.019.
This paper is concerned with developing rules for assignment of tooth prognosis based on actual tooth loss in the VA Dental Longitudinal Study. It is also of interest to rank the relative importance of various clinical factors for tooth loss. A multivariate survival tree procedure is proposed. The procedure is built on a parametric exponential frailty model, which leads to greater computational efficiency. We adopted the goodness-of-split pruning algorithm of LeBlanc and Crowley (1993) to determine the best tree size. In addition, the variable importance method is extended to trees grown by goodness-of-fit using an algorithm similar to the random forest procedure in Breiman (2001). Simulation studies for assessing the proposed tree and variable importance methods are presented. To limit the final number of meaningful prognostic groups, an amalgamation algorithm is employed to merge terminal nodes that are homogenous in tooth survival. The resulting prognosis rules and variable importance rankings seem to offer simple yet clear and insightful interpretations.
本文关注于在退伍军人事务部牙科纵向研究中,基于实际牙齿脱落情况制定牙齿预后分配规则。对各种导致牙齿脱落的临床因素的相对重要性进行排序也具有重要意义。本文提出了一种多元生存树方法。该方法基于参数指数脆弱模型构建,从而提高了计算效率。我们采用了勒布朗和克劳利(1993年)的分裂优度剪枝算法来确定最佳树规模。此外,变量重要性方法被扩展到通过拟合优度生长的树,使用了一种类似于布莱曼(2001年)随机森林方法的算法。本文给出了用于评估所提出的树方法和变量重要性方法的模拟研究。为了限制有意义的预后组的最终数量,采用了一种合并算法来合并在牙齿存活方面同质的终端节点。所得的预后规则和变量重要性排名似乎提供了简单而清晰且有洞察力的解释。