Institute of Experimental Cardiology, Cardiology Research Center, Moscow 121552, Russia.
Mol Cell Biochem. 2011 Dec;358(1-2):105-19. doi: 10.1007/s11010-011-0926-y. Epub 2011 Jun 28.
Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).
我们使用蒙特卡罗模拟技术,模拟了低分子量代谢物在骨骼肌细胞内的 3D 扩散。考虑了以下结构元素:(i)肌原纤维内的肌动蛋白和肌球蛋白丝的规则晶格,(ii)围绕肌原纤维的肌浆网和线粒体的膜,(iii)骨骼肌细胞内的一组肌原纤维,被细胞膜包围,(iv)嵌入细胞内部的一组额外的规则细胞内结构(“宏观隔室”)。这些宏观隔室被认为模拟扩散限制,因为之前提出了假设的圆柱形结构(直径为 16-22 μm)(de Graaf 等人,Biophys J 78:1657-1664,2000)。该模型允许我们分别计算粒子在径向和轴向方向上的表观扩散系数,D(app)(⊥)和 D(app)(II)。首先,在轴向方向上的粒子运动被认为是无限制的扩散(D(app)(II) = const)。由于粒子与肌丝和其他刚性障碍物的碰撞,表观径向扩散系数 D(app)(⊥)随时间而降低。我们的随机游走模拟结果与金鱼白肌和红肌中受限的磷酸肌酸径向扩散的 NMR 测量的实验数据相当吻合(Kinsey 等人,NMR Biomed 12:1-7,1999)。粒子从宏观隔室的低渗透性边界的反射(有效直径,D(eff)(MC)≈9.2-10.4 μm)是理论和实验数据一致的前提。假设的宏观隔室的低渗透性覆盖(99.8%的覆盖)对 D(app)(⊥)的时间依赖性降低做出了主要贡献。