Department of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 2 V4 Canada.
J Phys Chem B. 2011 Dec 8;115(48):14068-76. doi: 10.1021/jp203765x. Epub 2011 Jun 30.
The melting of a solid represents a transition between a solid state in which atoms are localized about fixed average crystal lattice positions to a fluid state that is characterized by relative atomic disorder and particle mobility so that the atoms wander around the material as a whole, impelled by the random thermal impulses of surrounding atoms. Despite the fundamental nature and practical importance of this particle delocalization transition, there is still no fundamental theory of melting and instead one often relies on the semi-phenomenological Lindemann-Gilvarry criterion to estimate roughly the melting point as an instability of the crystal lattice. Even the earliest simulations of melting in hexagonally packed hard discs by Alder and Wainwright indicated the active role of nonlocal collective atomic motions in the melting process, and here we utilize molecular dynamics (MD) simulation to determine whether the collective particle motion observed in melting has a similar geometrical form as those in recent studies of nanoparticle (NP) interfacial dynamics and the molecular dynamics of metastable glass-forming liquids. We indeed find string-like collective atomic motion in NP melting that is remarkably similar in form to the collective interfacial motions in NPs at equilibrium and to the collective motions found in the molecular dynamics of glass-forming liquids. We also find that the spatial localization and extent of string-like motion in the course of NP melting and freezing evolves with time in distinct ways. Specifically, the collective atomic motion propagates from the NP surface and from within the NP in melting and freezing, respectively, and the average string length varies smoothly with time during melting. In contrast, the string-like cooperative motion peaks in an intermediate stage of the freezing process, reflecting a general asymmetry in the dynamics of NP superheating and supercooling.
固体的熔化代表了一种从原子被固定在平均晶体点阵位置的固态到原子相对无序、粒子可移动的液态之间的转变,这样原子就会在整个材料中漫游,被周围原子的随机热脉冲推动。尽管这种粒子离域转变具有基本的性质和实际的重要性,但仍然没有熔化的基本理论,而是常常依赖于半唯象的林德曼-吉尔瓦里准则,将晶体点阵的不稳定性作为熔点的粗略估计。即使是 Alder 和 Wainwright 对六边形硬磁盘熔化的最早模拟也表明了非局域集体原子运动在熔化过程中的积极作用,在这里我们利用分子动力学(MD)模拟来确定在熔化过程中观察到的集体粒子运动是否与最近对纳米粒子(NP)界面动力学和亚稳玻璃形成液体的分子动力学的研究中的集体运动具有相似的几何形式。我们确实发现了 NP 熔化中存在类似弦的集体原子运动,其形式与 NP 平衡时的集体界面运动以及玻璃形成液体的分子动力学中的集体运动非常相似。我们还发现,NP 熔化和冻结过程中弦状运动的空间定位和程度随时间以不同的方式演变。具体来说,集体原子运动在熔化过程中从 NP 表面传播,并从 NP 内部传播,而在熔化过程中平均弦长随时间平滑变化。相比之下,在冻结过程的中间阶段,弦状合作运动达到峰值,反映了 NP 过热和过冷动力学的一般不对称性。