Zheng Lianqing, Luo Sheng-Nian, Thompson Donald L
Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
J Chem Phys. 2006 Apr 21;124(15):154504. doi: 10.1063/1.2174002.
Molecular dynamics simulations have been used to investigate the thermodynamic melting point of the crystalline nitromethane, the melting mechanism of superheated crystalline nitromethane, and the physical properties of crystalline and glassy nitromethane. The maximum superheating and glass transition temperatures of nitromethane are calculated to be 316 and 160 K, respectively, for heating and cooling rates of 8.9 x 10(9) Ks. Using the hysteresis method [Luo et al., J. Chem. Phys. 120, 11640 (2004)] and by taking the glass transition temperature as the supercooling temperature, we calculate a value of 251.1 K for the thermodynamic melting point, which is in excellent agreement with the two-phase result [Agrawal et al., J. Chem. Phys. 119, 9617 (2003)] of 255.5 K and measured value of 244.73 K. In the melting process, the nitromethane molecules begin to rotate about their lattice positions in the crystal, followed by translational freedom of the molecules. A nucleation mechanism for the melting is illustrated by the distribution of the local translational order parameter. The critical values of the Lindemann index for the C and N atoms immediately prior to melting (the Lindemann criterion) are found to be around 0.155 at 1 atm. The intramolecular motions and molecular structure of nitromethane undergo no abrupt changes upon melting, indicating that the intramolecular degrees of freedom have little effect on the melting. The thermal expansion coefficient and bulk modulus are predicted to be about two or three times larger in crystalline nitromethane than in glassy nitromethane. The vibrational density of states is almost identical in both phases.
分子动力学模拟已被用于研究结晶态硝基甲烷的热力学熔点、过热结晶态硝基甲烷的熔化机制以及结晶态和玻璃态硝基甲烷的物理性质。对于8.9×10⁹ K/s的加热和冷却速率,计算得出硝基甲烷的最大过热度和玻璃化转变温度分别为316 K和160 K。使用滞后方法[罗等人,《化学物理杂志》120, 11640 (2004)]并将玻璃化转变温度作为过冷温度,我们计算出热力学熔点为251.1 K,这与两相结果[阿格拉瓦尔等人,《化学物理杂志》119, 9617 (2003)]的255.5 K以及测量值244.73 K非常吻合。在熔化过程中,硝基甲烷分子开始在晶体中的晶格位置周围旋转,随后分子获得平移自由度。通过局部平移序参量的分布说明了熔化的成核机制。发现在1个大气压下,熔化前C和N原子的林德曼指数临界值约为0.155。硝基甲烷的分子内运动和分子结构在熔化时没有发生突然变化,这表明分子内自由度对熔化影响很小。预测结晶态硝基甲烷的热膨胀系数和体积模量比玻璃态硝基甲烷大约两到三倍。两个相的振动态密度几乎相同。