Smiley J F, Yazulla S
Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.
J Comp Neurol. 1990 Sep 15;299(3):375-88. doi: 10.1002/cne.902990309.
Electrophysiological experiments have predicted a direct synaptic input from glycinergic interplexiform cells (IPCs) to GABAergic horizontal cells in the Xenopus retina. However, previous ultrastructural studies failed to demonstrate this input. Here, we used three immunocytochemical approaches to investigate this issue. First, double-label postembedding immunocytochemistry with GABA- and glycine-like immunoreactivity (GABA-LI and glycine-LI) was used to study possible interactions of the glycinergic IPC with GABAergic horizontal cells. Processes postsynaptic to glycine-LI IPC terminals in the outer plexiform layer (OPL) fell into two groups, small microtubule-filled processes and larger electron-lucent processes with sparse microtubules and occasional mitochondria. In no case did we find glycine-LI synapses onto GABA-LI cells or processes. Second, pre-embedding immunocytochemistry was used to label GABA-LI cells and processes in the OPL. GABA-LI was sparse in horizontal cell axons and more intense in horizontal cell somas and in small processes. In agreement with our first set of experiments, GABA-LI profiles did not receive input from conventional synapses. Third, we localized glycine-receptor-like immunoreactivity (GlyR-LI) to several types of apparent synapses in the OPL. As expected, it was found at IPC synapses. Unexpectedly, GlyR-LI was also subsynaptic at photoreceptor synapses onto second order neurons, both at ribbon and basal junction type synapses. At least some of the GlyR-LI photoreceptor synapses were from cones. Also, GlyR-LI was apposed to photoreceptors and to unidentified small diameter processes, where no other indication of synaptic input was evident. Because glycine-LI is not found in photoreceptors, we suggest that glycine receptors at photoreceptor synapses are stimulated by glycine that diffuses from other sites, possibly from IPCs. This interpretation is consistent with available physiological studies of glycinergic effects in this retina.
电生理实验预测,非洲爪蟾视网膜中甘氨酸能双极间细胞(IPCs)与GABA能水平细胞之间存在直接的突触输入。然而,先前的超微结构研究未能证实这种输入。在此,我们采用三种免疫细胞化学方法来研究这个问题。首先,使用GABA样和甘氨酸样免疫反应性(GABA-LI和甘氨酸-LI)的包埋后双重标记免疫细胞化学来研究甘氨酸能IPCs与GABA能水平细胞之间可能的相互作用。外网状层(OPL)中甘氨酸-LI IPC终末的突触后过程分为两组,小的充满微管的过程和较大的电子透亮过程,微管稀疏且偶尔有线粒体。我们在任何情况下都未发现甘氨酸-LI突触与GABA-LI细胞或过程相连。其次,使用包埋前免疫细胞化学标记OPL中的GABA-LI细胞和过程。GABA-LI在水平细胞轴突中稀疏,在水平细胞胞体和小过程中更强烈。与我们的第一组实验一致,GABA-LI结构未接受传统突触的输入。第三,我们将甘氨酸受体样免疫反应性(GlyR-LI)定位到OPL中的几种明显突触类型。正如预期的那样,在IPCs突触处发现了它。出乎意料的是,在光感受器与二级神经元的突触处,无论是带状突触还是基底连接型突触,GlyR-LI也位于突触下。至少一些GlyR-LI光感受器突触来自视锥细胞。此外,GlyR-LI与光感受器和未识别的小直径过程相邻,在这些地方没有明显的其他突触输入迹象。由于在光感受器中未发现甘氨酸-LI,我们认为光感受器突触处的甘氨酸受体受到从其他部位扩散而来的甘氨酸的刺激,可能来自IPCs。这种解释与该视网膜中甘氨酸能作用的现有生理学研究一致。