Suppr超能文献

碳酸氢盐对青蛙视网膜视杆细胞光转导的调节作用:碳酸酐酶和碳酸氢盐交换的作用

Rod phototransduction modulated by bicarbonate in the frog retina: roles of carbonic anhydrase and bicarbonate exchange.

作者信息

Donner K, Hemilä S, Kalamkarov G, Koskelainen A, Shevchenko T

机构信息

Department of Zoology, University of Helsinki, Finland.

出版信息

J Physiol. 1990 Jul;426:297-316. doi: 10.1113/jphysiol.1990.sp018139.

Abstract
  1. Effects on rod phototransduction following manipulation of retinal CO2-HCO3- and H+ fluxes were studied in dark-adapted retinas of the frog and the tiger salamander. 2. Rod photoresponses to brief flashes of light were recorded from the isolated sensory retina as electroretinogram mass receptor potentials and from isolated rods by the suction-pipette technique. The experimental treatments were: (1) varying [CO2] + [HCO3-] in the perfusion fluid: (2) applying acetazolamide (AAA), which inhibits the enzyme carbonic anhydrase (CA); and (3) applying 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) which blocks exchange mechanisms transporting HCO3- across cell membranes. 3. The concentration of the internal transmitter of the rods, cyclic GMP, was biochemically determined from the rod outer segment layer of retinas that had been incubated in the same solutions as were used for perfusion in the electrophysiological experiments. 4. The introduction of 6 mM-sodium bicarbonate to replace half the buffer of a nominally CO2-HCO3(-)-free (12 mM-phosphate or HEPES, [Na+] constant) Ringer solution doubled the cyclic GMP concentration in the rod outer segment layer and increased the saturating response amplitude and the relative sensitivity of rods in the intact retina. 5. The introduction of 0.5 mM-AAA into bicarbonate-containing Ringer solution accelerated the growth of saturated responses and sensitivity. Incubation of the retina in AAA-bicarbonate Ringer solution elevated the concentration of cyclic GMP ninefold compared with the phosphate control. 6. No effects of switching to bicarbonate-AAA Ringer solution were observed in the photocurrent of isolated rods drawn into suction pipettes with only the outer segment protruding into the perfusion fluid. The target of AAA is probably the CA-containing Müller cell. 7. The introduction of DIDS into the perfusate (at normal pH 7.5) set off a continuous decay of photoresponses which finally abolished light sensitivity completely. The decay proceeded regardless of whether bicarbonate and AAA were present or not. 8. Rods that had lost their photosensitivity in DIDS recovered almost fully when the pH of the DIDS perfusate was raised to 8.5. They also recovered when DIDS was washed out with bicarbonate Ringer solution at constant pH (7.5). 9. It is proposed that all our treatments ultimately modulate the intracellular pH of the rods which is determined by the relative rates of H+ leakage and HCO3- transport into the cells.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 我们研究了在青蛙和虎螈暗适应视网膜中,操纵视网膜二氧化碳 - 碳酸氢根和氢离子通量对视杆光转导的影响。2. 从分离的感觉视网膜记录视杆对短暂闪光的光反应,作为视网膜电图质量感受器电位,并通过吸管技术从分离的视杆记录。实验处理包括:(1)改变灌注液中的[二氧化碳] + [碳酸氢根];(2)应用乙酰唑胺(AAA),它抑制碳酸酐酶(CA);(3)应用4,4'-二异硫氰基芪-2,2'-二磺酸(DIDS),它阻断跨细胞膜转运碳酸氢根的交换机制。3. 视杆内部递质环磷酸鸟苷(cGMP)的浓度,是通过对视网膜视杆外节层进行生化测定得出的,这些视网膜与电生理实验中用于灌注的溶液孵育。4. 引入6 mM碳酸氢钠替代名义上不含二氧化碳 - 碳酸氢根(12 mM磷酸盐或HEPES,[钠离子]恒定)的林格溶液中的一半缓冲液,使视杆外节层中的环磷酸鸟苷浓度加倍,并增加了完整视网膜中视杆的饱和反应幅度和相对敏感性。5. 向含碳酸氢根的林格溶液中引入0.5 mM AAA加速了饱和反应和敏感性的增长。与磷酸盐对照相比,将视网膜在含AAA的碳酸氢根林格溶液中孵育,使环磷酸鸟苷浓度提高了九倍。6. 在仅将外节突出到灌注液中的吸管吸取的分离视杆的光电流中,未观察到切换到碳酸氢根 - AAA林格溶液的影响。AAA的作用靶点可能是含CA的米勒细胞。7. 将DIDS引入灌注液(在正常pH 7.5)引发光反应的持续衰减,最终完全消除光敏感性。无论是否存在碳酸氢根和AAA,衰减都在进行。8. 当DIDS灌注液的pH升高到8.5时,在DIDS中失去光敏感性的视杆几乎完全恢复。当用恒定pH(7.5)的碳酸氢根林格溶液冲洗掉DIDS时,它们也会恢复。9. 有人提出,我们所有的处理最终都调节视杆细胞内的pH,这是由氢离子泄漏和碳酸氢根转运进入细胞的相对速率决定的。(摘要截短至400字)

相似文献

2
pH regulation in frog cones studied by mass receptor photoresponses from the isolated retina.
Vision Res. 1993 Nov;33(16):2181-8. doi: 10.1016/0042-6989(93)90098-h.
3
Regulation of intracellular pH in salamander retinal rods.
J Physiol. 1997 Jan 1;498 ( Pt 1)(Pt 1):61-72. doi: 10.1113/jphysiol.1997.sp021841.
4
pH changes in frog rods upon manipulation of putative pH-regulating transport mechanisms.
Vision Res. 1996 Oct;36(19):3029-36. doi: 10.1016/0042-6989(96)00052-1.
6
An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells.
J Physiol. 1989 Apr;411:179-94. doi: 10.1113/jphysiol.1989.sp017567.
8
Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.
J Neurosci. 1991 Dec;11(12):3972-83. doi: 10.1523/JNEUROSCI.11-12-03972.1991.
9
Modes of Accessing Bicarbonate for the Regulation of Membrane Guanylate Cyclase (ROS-GC) in Retinal Rods and Cones.
eNeuro. 2019 Feb 15;6(1). doi: 10.1523/ENEURO.0393-18.2019. eCollection 2019 Jan-Feb.
10
Bicarbonate transport under nominally bicarbonate-free conditions in bovine corneal endothelium.
Exp Eye Res. 1994 Apr;58(4):415-21. doi: 10.1006/exer.1994.1034.

引用本文的文献

2
pH in the vertebrate retina and its naturally occurring and pathological changes.
Prog Retin Eye Res. 2025 Jan;104:101321. doi: 10.1016/j.preteyeres.2024.101321. Epub 2024 Nov 26.
3
Bicarbonate boosts flash response amplitude to augment absolute sensitivity and extend dynamic range in murine retinal rods.
Front Mol Neurosci. 2023 Apr 14;16:1125006. doi: 10.3389/fnmol.2023.1125006. eCollection 2023.
4
Effects of cell size and bicarbonate on single photon response variability in retinal rods.
Front Mol Neurosci. 2022 Dec 14;15:1050545. doi: 10.3389/fnmol.2022.1050545. eCollection 2022.
5
Modes of Accessing Bicarbonate for the Regulation of Membrane Guanylate Cyclase (ROS-GC) in Retinal Rods and Cones.
eNeuro. 2019 Feb 15;6(1). doi: 10.1523/ENEURO.0393-18.2019. eCollection 2019 Jan-Feb.
6
Bicarbonate and Ca(2+) Sensing Modulators Activate Photoreceptor ROS-GC1 Synergistically.
Front Mol Neurosci. 2016 Jan 28;9:5. doi: 10.3389/fnmol.2016.00005. eCollection 2016.
7
Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.
J Biol Chem. 2015 Apr 24;290(17):11052-60. doi: 10.1074/jbc.M115.650408. Epub 2015 Mar 12.
8
Soluble adenylyl cyclase in the eye.
Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2579-83. doi: 10.1016/j.bbadis.2014.07.032. Epub 2014 Aug 6.
9
The neurovascular retina in retinopathy of prematurity.
Prog Retin Eye Res. 2009 Nov;28(6):452-82. doi: 10.1016/j.preteyeres.2009.06.003. Epub 2009 Jun 27.
10
Silencing acid-sensing ion channel 1a alters cone-mediated retinal function.
J Neurosci. 2006 May 24;26(21):5800-9. doi: 10.1523/JNEUROSCI.0344-06.2006.

本文引用的文献

2
Protons suppress the dark current of frog retinal rods.
J Physiol. 1984 Feb;347:85-110. doi: 10.1113/jphysiol.1984.sp015055.
3
Experimental displacement of intracellular pH and the mechanism of its subsequent recovery.
J Physiol. 1984 Sep;354(Suppl):3P-22P. doi: 10.1113/jphysiol.1984.sp015397.
4
Variable CA II compartmentalization in vertebrate retina.
Ann N Y Acad Sci. 1984;429:430-46. doi: 10.1111/j.1749-6632.1984.tb12369.x.
5
Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes.
Methods Enzymol. 1982;81:532-42. doi: 10.1016/s0076-6879(82)81074-4.
6
Glycolytic and oxidative metabolism in relation to retinal function.
J Gen Physiol. 1981 Jun;77(6):667-92. doi: 10.1085/jgp.77.6.667.
8
9
Carbonic anhydrase: chemistry, physiology, and inhibition.
Physiol Rev. 1967 Oct;47(4):595-781. doi: 10.1152/physrev.1967.47.4.595.
10
Localization of carbonic anhydrase activity in the vertebrate retina.
Exp Eye Res. 1973 Jan 1;15(1):105-19. doi: 10.1016/0014-4835(73)90195-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验