Suppr超能文献

脊椎动物视网膜中的pH值及其自然发生的变化和病理变化。

pH in the vertebrate retina and its naturally occurring and pathological changes.

作者信息

Dmitriev Andrey V, Linsenmeier Robert A

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.

出版信息

Prog Retin Eye Res. 2025 Jan;104:101321. doi: 10.1016/j.preteyeres.2024.101321. Epub 2024 Nov 26.

Abstract

This review summarizes the existing information on the concentration of H (pH) in vertebrate retinae and its changes due to various reasons. Special features of H homeostasis that make it different from other ions will be discussed, particularly metabolic production of H and buffering. The transretinal distribution of extracellular H concentration ([H]) and its changes under illumination and other conditions will be described in detail, since [H] is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H] occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H] falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H] with H being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.

摘要

本综述总结了有关脊椎动物视网膜中H(pH)浓度及其因各种原因而发生变化的现有信息。将讨论H稳态不同于其他离子的特殊特征,特别是H的代谢产生和缓冲作用。由于细胞外H浓度([H])比细胞内pH受到更深入的研究,因此将详细描述其在视网膜中的跨视网膜分布及其在光照和其他条件下的变化。在脊椎动物视网膜中,[H]最高值出现在外核层内部,并朝着视网膜色素上皮(RPE)方向降低,在RPE顶端一侧达到血液水平。[H]也朝着玻璃体方向下降,但降幅较小,因此视网膜内层相对于玻璃体呈酸性。光会导致源于电活动和代谢的复杂变化,最终导致碱化。[H]存在节律性变化,在昼夜节律的夜间较高。细胞外pH有可能作为细胞间容积传递的信号,但有证据表明pH并非RPE跨膜液体运输的正常调节因子,也不是水平细胞反馈信号。病理和实验性条件(全身性代谢性酸中毒、缺氧和缺血、血管阻塞、葡萄糖过量和糖尿病、遗传疾病以及碳酸酐酶阻断)会扰乱H稳态,大多会导致视网膜酸中毒,进而影响视网膜血流、代谢和功能。

相似文献

1
pH in the vertebrate retina and its naturally occurring and pathological changes.
Prog Retin Eye Res. 2025 Jan;104:101321. doi: 10.1016/j.preteyeres.2024.101321. Epub 2024 Nov 26.
2
Development of diabetes-induced acidosis in the rat retina.
Exp Eye Res. 2016 Aug;149:16-25. doi: 10.1016/j.exer.2016.05.028. Epub 2016 Jun 2.
3
Retinal pH and Acid Regulation During Metabolic Acidosis.
Curr Eye Res. 2018 Jul;43(7):902-912. doi: 10.1080/02713683.2018.1458882. Epub 2018 Apr 11.
4
Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements.
Vis Neurosci. 2002 Nov-Dec;19(6):793-806. doi: 10.1017/s095252380219609x.
5
Retinal arterial occlusion leads to acidosis in the cat.
Exp Eye Res. 2005 Apr;80(4):527-33. doi: 10.1016/j.exer.2004.11.002.
6
Extracellular pH in the isolated retina of the toad in darkness and during illumination.
J Physiol. 1989 Dec;419:353-78. doi: 10.1113/jphysiol.1989.sp017876.
7
Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina.
PLoS One. 2009 Jun 30;4(6):e6090. doi: 10.1371/journal.pone.0006090.
9
Effects of systemic hypoxia on pH outside rod photoreceptors in the cat retina.
Exp Eye Res. 1992 May;54(5):699-709. doi: 10.1016/0014-4835(92)90024-m.
10
Intraretinal pH in diabetic cats.
Curr Eye Res. 2005 Mar;30(3):229-40. doi: 10.1080/02713680590934067.

引用本文的文献

本文引用的文献

1
Increased Retinal Metabolism Induced by Flicker in the Isolated Mouse Retina.
eNeuro. 2024 May 10;11(5). doi: 10.1523/ENEURO.0509-23.2024. Print 2024 May.
3
The role of retinal glial cells and related factors in macular edema.
Biochem Biophys Res Commun. 2024 Feb 5;695:149415. doi: 10.1016/j.bbrc.2023.149415. Epub 2023 Dec 23.
4
Brain Tissue Oxygen and BOLD fMRI Under Different Levels of Neuronal Activity.
Adv Exp Med Biol. 2023;1438:3-8. doi: 10.1007/978-3-031-42003-0_1.
5
Oxygen profiles and oxygen consumption in the isolated mouse retina.
Exp Eye Res. 2023 Aug;233:109554. doi: 10.1016/j.exer.2023.109554. Epub 2023 Jul 13.
7
Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function.
Prog Retin Eye Res. 2023 May;94:101119. doi: 10.1016/j.preteyeres.2022.101119. Epub 2022 Dec 8.
9
Vasodilation of Pre-contracted Porcine Retinal Arteries by Carbonic Anhydrase Inhibitors with Enhanced Lipophilicity.
Curr Eye Res. 2022 Dec;47(12):1615-1621. doi: 10.1080/02713683.2022.2126861. Epub 2022 Oct 11.
10
Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression.
Cell Rep. 2022 Jul 12;40(2):111040. doi: 10.1016/j.celrep.2022.111040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验