Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Brisbane, Queensland, Australia.
Artif Organs. 2011 Aug;35(8):807-13. doi: 10.1111/j.1525-1594.2011.01283.x. Epub 2011 Jul 5.
The absence of an effective, easily implantable right ventricular assist device (RVAD) significantly diminishes long-term treatment options for patients with biventricular heart failure. The implantation of a second rotary left ventricular assist device (LVAD) for right heart support is therefore being considered; however, this approach exhibits technical challenges when adapting current devices to produce the lower pressures required of the pulmonary circulation. Hemodynamic adaptation may be achieved by either reducing the rotational speed of the right pump impeller or reducing the diameter of the right outflow cannula by the placement of a restricting band; however, the optimal value and influence of changes to each parameter are not well understood. Hemodynamics were therefore investigated using different banding diameters of the right outflow cannula (3-6.5 mm) and pump speeds (500-4500 rpm), using two identical rotary blood pumps coupled to a pulsatile mock circulation loop. Reducing the speed of the right pump from 4900 rpm (for left ventricle support) to 3500 rpm, or banding the Ø10 mm (area 78.5 mm²) right outflow graft to Ø5.4 mm (22.9 mm²) produced suitable hemodynamics. Pulmonary pressures were most sensitive to banding diameters, especially when RVAD flow exceeded LVAD flow. This occurred between Ø5.3 and Ø6.5 mm (22.05-38.5 mm²) and speeds between 3200 and 4400 rpm, with the flow imbalance potentially leading to pulmonary congestion. Total flow was not affected by banding diameters and speeds below this range, and only increased slightly at higher values. Both right outflow banding or right pump speed reduction were found to be effective techniques to allow a rotary LVAD to be used directly for right heart support. However, the observed sensitivity to diameter and speed indicate that challenges may be presented when setting appropriate values for each patient, and control over these parameters is desirable.
目前尚无有效的、易于植入的右心室辅助装置(RVAD),这使得双心室心力衰竭患者的长期治疗选择受到极大限制。因此,人们考虑为右心支持植入第二个旋转左心室辅助装置(LVAD);然而,当将当前设备适配以产生肺动脉循环所需的较低压力时,这种方法存在技术挑战。通过降低右泵叶轮的转速或通过放置限制带来减小右流出套管的直径,可以实现血液动力学的适应性;然而,每个参数的最佳值和变化的影响尚不清楚。因此,使用两种相同的旋转血泵连接到脉动模拟循环回路,通过改变右流出套管的不同束带直径(3-6.5mm)和泵速(500-4500rpm)来研究血液动力学。将右泵的速度从 4900rpm(用于左心室支持)降低到 3500rpm,或用束带将直径为 10mm(面积为 78.5mm²)的右流出移植物束带至直径为 5.4mm(面积为 22.9mm²),可产生合适的血液动力学。肺动脉压对束带直径最敏感,尤其是当 RVAD 流量超过 LVAD 流量时。这发生在直径为 Ø5.3 和 Ø6.5mm(22.05-38.5mm²)和速度在 3200 和 4400rpm 之间,流量不平衡可能导致肺充血。在这个范围以下,束带直径和速度不会影响总流量,只有在更高的值时才会略有增加。发现右流出束带或右泵转速降低都是允许旋转 LVAD 直接用于右心支持的有效技术。然而,观察到的对直径和速度的敏感性表明,在为每个患者设置适当的值时可能会出现挑战,并且需要对这些参数进行控制。