Suppr超能文献

受限介质中首次通过时间分布的普适类。

Universality classes of first-passage-time distribution in confined media.

作者信息

Meyer B, Chevalier C, Voituriez R, Bénichou O

机构信息

Laboratoire de Physique Théorique de la matière Condensée (UMR 7600), Université Paris 6, Paris, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051116. doi: 10.1103/PhysRevE.83.051116. Epub 2011 May 16.

Abstract

We study the first-passage time (FPT) distribution to a target site for a random walker evolving in a bounded domain. We show that in the limit of large volume of the confining domain, this distribution falls into universality classes indexed by the walk dimension d(w) and the fractal dimension d(f) of the medium, which have been recently identified previously [Bénichou et al., Nat. Chem. 2, 472 (2010)]. We present in this paper a complete derivation of these universal distributions, discuss extensively the range of applicability of the results, and extend the method to continuous-time random walks. This analysis puts forward the importance of the geometry, and in particular the position of the starting point, in first-passage statistics. Analytical results are validated by numerical simulations, applied to various models of transport in disordered media, which illustrate the universality classes of the FPT distribution.

摘要

我们研究了在有界域中演化的随机漫步者到达目标位点的首次通过时间(FPT)分布。我们表明,在限制域体积很大的极限情况下,这种分布落入由行走维度d(w)和介质的分形维数d(f)索引的普适类中,这些普适类最近已被前人确定[贝尼乔等人,《自然·化学》2, 472 (2010)]。我们在本文中给出了这些普适分布的完整推导,广泛讨论了结果的适用范围,并将该方法扩展到连续时间随机游走。该分析提出了几何结构,特别是起点位置,在首次通过统计中的重要性。通过数值模拟验证了分析结果,并将其应用于无序介质中各种传输模型,这些模型说明了FPT分布的普适类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验