Condamin S, Bénichou O, Tejedor V, Voituriez R, Klafter J
Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, UMR CNRS 7600, case 121, 4 Place Jussieu, 75005 Paris, France.
Nature. 2007 Nov 1;450(7166):77-80. doi: 10.1038/nature06201.
How long does it take a random walker to reach a given target point? This quantity, known as a first-passage time (FPT), has led to a growing number of theoretical investigations over the past decade. The importance of FPTs originates from the crucial role played by first encounter properties in various real situations, including transport in disordered media, neuron firing dynamics, spreading of diseases or target search processes. Most methods of determining FPT properties in confining domains have been limited to effectively one-dimensional geometries, or to higher spatial dimensions only in homogeneous media. Here we develop a general theory that allows accurate evaluation of the mean FPT in complex media. Our analytical approach provides a universal scaling dependence of the mean FPT on both the volume of the confining domain and the source-target distance. The analysis is applicable to a broad range of stochastic processes characterized by length-scale-invariant properties. Our theoretical predictions are confirmed by numerical simulations for several representative models of disordered media, fractals, anomalous diffusion and scale-free networks.
一个随机游走者到达给定目标点需要多长时间?这个量,即所谓的首次通过时间(FPT),在过去十年中引发了越来越多的理论研究。FPT的重要性源于首次相遇性质在各种实际情况中所起的关键作用,包括无序介质中的输运、神经元放电动力学、疾病传播或目标搜索过程。在受限区域中确定FPT性质的大多数方法仅限于有效的一维几何结构,或者仅在均匀介质中的更高空间维度。在这里,我们发展了一种通用理论,能够准确评估复杂介质中的平均FPT。我们的分析方法给出了平均FPT对受限区域体积和源 - 目标距离的通用标度依赖性。该分析适用于广泛的具有长度尺度不变性质的随机过程。我们的理论预测通过对无序介质、分形、反常扩散和无标度网络的几个代表性模型的数值模拟得到了证实。