Suppr超能文献

作为具有自发破缺的贝奇 - 鲁埃 - 斯托拉 - 秋京对称性的维滕型拓扑场论的自组织临界性。

Self-organized criticality as Witten-type topological field theory with spontaneously broken Becchi-Rouet-Stora-Tyutin symmetry.

作者信息

Ovchinnikov Igor V

机构信息

Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095-1594, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051129. doi: 10.1103/PhysRevE.83.051129. Epub 2011 May 25.

Abstract

Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is "self-tuned." The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.

摘要

在此,我们提出一种设想,根据该设想,一个通用的自组织临界(SOC)系统可被视为具有自发破缺的贝奇 - 鲁埃 - 斯托拉 - 蒂尤廷(BRST)对称性的维滕型拓扑场论(W - TFT)。SOC的条件之一是缓慢驱动噪声,这明确暗示了对相应随机微分方程(SDE)的斯特拉托诺维奇解释。反过来,这就需要使用帕里西 - 苏拉斯 - 吴随机量子化程序,该程序直接导致一个具有BRST精确作用量的模型,即一个W - TFT。在SDE的参数空间中,必定存在全维区域,其中BRST对称性被瞬子自发破缺,在SOC的背景下,瞬子本质上就是雪崩。在这些区域中,雪崩型SOC动力学从原本无动力学的W - TFT中解放出来,并且存在法捷耶夫 - 波波夫鬼场的戈德斯通模式。戈德斯通微子代表瞬子(雪崩)的模,并且由于无能隙,在低能、长波长极限下负责临界雪崩分布。上述论点对于SDE参数的适度变化具有鲁棒性,并且临界性是“自调谐的”。本文的设想表明,W - TFT机制可能会在研究SOC各种物理实现的现代科学的许多不同领域中找到应用。它还表明,原则上某些SOC与拓扑量子计算的概念之间可能存在联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验