Suppr超能文献

针对详细化学反应模型,研究无滑移壁面通道内氢氧火焰加速及向爆轰的转变。

Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

作者信息

Ivanov M F, Kiverin A D, Liberman M A

机构信息

Joint Institute for High Temperatures, Russian Academy of Science, Moscow, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056313. doi: 10.1103/PhysRevE.83.056313. Epub 2011 May 13.

Abstract

The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

摘要

通过对二维反应性纳维 - 斯托克斯方程进行高分辨率数值模拟,包括粘性、热传导、分子扩散的影响以及氢氧气体混合物的详细化学反应机理,从理论上研究了存在壁面摩擦的通道内火焰加速以及爆燃向爆轰转变(DDT)的特征。结果表明,在宽通道中,从一开始火焰速度在短时间内呈指数增加,然后火焰加速减小,最终燃烧波速度突然增加并实际转变为爆轰。在宽度小于临界值的窄通道中,火焰速度的指数增加没有界限,最终转变为爆轰。爆轰转变是由于在加速火焰尖端形成的压力脉冲引起的。由于压力脉冲与反应中释放的热量之间的正反馈耦合,压力脉冲的幅度呈指数增长。最后,大幅度压力脉冲陡化为与反应区耦合的强激波,形成过驱动爆轰。对于化学过程由链分支动力学控制的可燃材料,研究了通过泽尔多维奇梯度机制从温度梯度到爆轰的演化及其对爆燃 - 爆轰转变的适用性。高分辨率模拟结果与火焰加速和DDT的实验观测结果完全一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验