Šuvakov Milovan, Dmitrašinović V
Institute of Physics, Belgrade University, Pregrevica 118, Zemun, P. O. Box 57, SRB-11080 Beograd, Serbia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056603. doi: 10.1103/PhysRevE.83.056603. Epub 2011 May 10.
We use the maximally permutation-symmetric set of three-body coordinates that consist of the "hyper-radius" R=√[ρ(2)+λ(2)], the "rescaled area of the triangle" √[3]/2R(2) |ρ×λ|), and the (braiding) hyperangle Φ=arctan(2ρ·λ/λ(2)-ρ(2)) to analyze the "figure-eight" choreographic three-body motion discovered by Moore [Phys. Rev. Lett. 70, 3675 (1993)] in the Newtonian three-body problem. Here ρ,λ are the two Jacobi relative coordinate vectors. We show that the periodicity of this motion is closely related to the braiding hyperangle Φ. We construct an approximate integral of motion ̅G that together with the hyperangle Φ forms the action-angle pair of variables for this problem and show that it is the underlying cause of figure-eight motion's stability. We construct figure-eight orbits in two other attractive permutation-symmetric three-body potentials. We compare the figure-eight orbits in these three potentials and discuss their generic features, as well as their differences. We apply these variables to two new periodic, but nonchoreographic, orbits: One has a continuously rising Φ in time t, just like the figure-eight motion, but with a different, more complex, periodicity, whereas the other one has an oscillating Φ(t) temporal behavior.
我们使用三体坐标的最大置换对称集,该集由“超半径”(R = \sqrt{[\rho(2) + \lambda(2)]})、“三角形的重标面积”(\sqrt{[3]/2R(2)|\rho\times\lambda|})以及(编织)超角(\varPhi = \arctan(2\rho\cdot\lambda / \lambda(2) - \rho(2)))组成,以分析摩尔[《物理评论快报》70, 3675 (1993)]在牛顿三体问题中发现的“8字形”三体舞蹈运动。这里(\rho)、(\lambda)是两个雅可比相对坐标向量。我们表明,这种运动的周期性与编织超角(\varPhi)密切相关。我们构造了一个近似运动积分(\overline{G}),它与超角(\varPhi)一起构成了该问题的作用 - 角变量对,并表明它是8字形运动稳定性的根本原因。我们在另外两个有吸引力的置换对称三体势中构造了8字形轨道。我们比较了这三种势中的8字形轨道,并讨论了它们的一般特征以及它们的差异。我们将这些变量应用于两个新的周期性但非舞蹈编排的轨道:一个在时间(t)中(\varPhi)持续上升,就像8字形运动一样,但具有不同的、更复杂的周期性,而另一个具有振荡的(\varPhi(t))时间行为。