Hou Shuang, Phung Duy Linh, Lin Wei-Yu, Wang Ming-wei, Liu Kan, Shen Clifton Kwang-Fu
Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.
J Vis Exp. 2011 Jun 28(52):2755. doi: 10.3791/2755.
Biomolecules, including peptides¹⁻⁹, proteins¹⁰⁻¹¹, and antibodies and their engineered fragments¹²⁻¹⁴, are gaining importance as both potential therapeutics and molecular imaging agents. Notably, when labeled with positron-emitting radioisotopes (e.g., Cu-64, Ga-68, or F-18), they can be used as probes for targeted imaging of many physiological and pathological processes.¹⁵⁻¹⁸ Therefore, significant effort has devoted to the synthesis and exploration of ¹⁸F-labeled biomolecules. Although there are elegant examples of the direct ¹⁸F-labeling of peptides,¹⁹⁻²² the harsh reaction conditions (i.e., organic solvent, extreme pH, high temperature) associated with direct radiofluorination are usually incompatible with fragile protein samples. To date, therefore, the incorporation of radiolabeled prosthetic groups into biomolecules remains the method of choice.²³(,)²⁴ N-Succinimidyl-4-[¹⁸F]fluorobenzoate ([¹⁸F]SFB),²⁵⁻³⁷ a Bolton-Hunter type reagent that reacts with the primary amino groups of biomolecules, is a very versatile prosthetic group for the ¹⁸F-labeling of a wide spectrum of biological entities, in terms of its evident in vivo stability and high radiolabeling yield. After labeling with [¹⁸F]SFB, the resulting [F]fluorobenzoylated biomolecules could be explored as potential PET tracers for in vivo imaging studies.¹ Most [¹⁸F]SFB radiosyntheses described in the current literatures require two or even three reactors and multiple purifications by using either solid phase extraction (SPE) or high-performance liquid chromatography (HPLC). Such lengthy processes hamper its routine production and widespread applications in the radiolabeling of biomolecules. Although several module-assisted [¹⁸F]SFB syntheses have been reported²⁹⁻³²,⁴¹⁻⁴² they are mainly based on complicated and lengthy procedures using costly commercially-available radiochemistry boxes (Table 1). Therefore, further simplification of the radiosynthesis of [¹⁸F]SFB using a low-cost setup would be very beneficial for its adaption to an automated process. Herein, we report a concise preparation of [¹⁸F]SFB, based on a simplified one-pot microwave-assisted synthesis (Figure 1). Our approach does not require purification between steps or any aqueous reagents. In addition, microwave irradiation, which has been used in the syntheses of several PET tracers,³⁸⁻⁴¹ can gives higher RCYs and better selectivity than the corresponding thermal reactions or they provide similar yields in shorter reaction times.³⁸Most importantly, when labeling biomolecules, the time saved could be diverted to subsequent bioconjugation or PET imaging step. ²⁸(,)⁴³The novelty of our improved [¹⁸F]SFB synthesis is two-fold: (1) the anhydrous deprotection strategy requires no purification of intermediate(s) between each step and (2) the microwave-assisted radiochemical transformations enable the rapid, reliable production of [¹⁸F]SFB.
生物分子,包括肽¹⁻⁹、蛋白质¹⁰⁻¹¹、抗体及其工程片段¹²⁻¹⁴,作为潜在的治疗剂和分子成像剂正变得越来越重要。值得注意的是,当用发射正电子的放射性同位素(如Cu - 64、Ga - 68或F - 18)标记时,它们可以用作许多生理和病理过程靶向成像的探针。¹⁵⁻¹⁸因此,人们致力于¹⁸F标记生物分子的合成和探索。尽管有肽直接¹⁸F标记的优秀示例,¹⁹⁻²²但与直接放射性氟化相关的苛刻反应条件(即有机溶剂、极端pH值、高温)通常与脆弱的蛋白质样品不相容。因此,迄今为止,将放射性标记的辅基掺入生物分子仍然是首选方法。²³(,)²⁴ N - 琥珀酰亚胺基 - 4 - [¹⁸F]氟苯甲酸酯([¹⁸F]SFB)²⁵⁻³⁷,一种与生物分子的伯氨基反应的博尔顿 - 亨特型试剂,就其明显的体内稳定性和高放射性标记产率而言,是用于多种生物实体¹⁸F标记的非常通用的辅基。用[¹⁸F]SFB标记后,所得的[F]氟苯甲酰化生物分子可作为潜在的PET示踪剂用于体内成像研究。¹当前文献中描述的大多数[¹⁸F]SFB放射性合成需要两个甚至三个反应器,并通过使用固相萃取(SPE)或高效液相色谱(HPLC)进行多次纯化。如此冗长的过程阻碍了其常规生产以及在生物分子放射性标记中的广泛应用。尽管已经报道了几种模块辅助的[¹⁸F]SFB合成²⁹⁻³²,⁴¹⁻⁴²,但它们主要基于使用昂贵的市售放射化学盒的复杂且冗长的程序(表1)。因此,使用低成本装置进一步简化[¹⁸F]SFB的放射性合成对于其适应自动化过程将非常有益。在此,我们报告了基于简化的一锅微波辅助合成(图1)的[¹⁸F]SFB的简洁制备方法。我们的方法不需要步骤之间的纯化或任何水性试剂。此外,已用于几种PET示踪剂合成的微波辐射³⁸⁻⁴¹,与相应的热反应相比,可以提供更高的放射性化学产率(RCYs)和更好的选择性,或者在更短的反应时间内提供相似的产率。³⁸最重要的是,在标记生物分子时,节省的时间可以用于后续的生物共轭或PET成像步骤。²⁸(,)⁴³我们改进的[¹⁸F]SFB合成的新颖之处有两点:(1)无水脱保护策略不需要在每个步骤之间纯化中间体,(2)微波辅助的放射化学转化能够快速、可靠地生产[¹⁸F]SFB。