Physikalisches Institut, Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.
Chemistry. 2011 Aug 8;17(33):9094-106. doi: 10.1002/chem.201100500. Epub 2011 Jul 5.
The synthesis, crystal structure and magnetic characterisation by magnetisation and inelastic neutron scattering (INS) of a mixed-valent Mn(10) supertetrahedral aggregate [Mn(III)(6)Mn(II)(4)(μ(4)-O)(4)(μ(3)-N(3))(3)(μ(3)-Br)(Hmpt)(6)(Br)]Br(0.7)(N(3))(0.3)·2MeOH·3MeCN (1) (H(3)mpt=3-methylpentan-1,3,5-triol) is reported. The magnetic core of the molecule can be described as an octahedron of six S=2 Mn(III) ions with four faces, each capped by a S=5/2 Mn(II) ion such as to form the supertetrahedron. Unlike most related complexes, the molecular symmetry is slightly reduced from approximately T(d) to C(3). The magnetic data reveal a total spin of S=22 in the ground state due to ferromagnetic exchange couplings within the molecule. The combined INS and magnetic data permits the accurate determination of the exchange coupling constants. Two types are found. The couplings between the Mn(III) ions in the inner octahedron are characterised by J(a)=18.4(3) K, whereas the couplings between the apical Mn(II) ions to the neighbouring Mn(III) ions are given by J(b)=7.3(2) K. The significantly larger coupling strength J(a) as compared to J(b), and the near-T(d) symmetry have profound consequences on the energy spectrum, which are discussed and carefully analysed. In particular, the observed INS spectra can consistently be reproduced by a simplified model in which the inner octahedron is replaced by one large spin of length S(0)=12. This model provides intuitive insight into the structure of the magnetic spectrum. Additionally, the magnetic excitations at low temperature are analysed within the frame of ferromagnetic linear spin-wave theory, which permits an analytical calculation of the energy levels. For ferromagnetic clusters, a close analogy to the Hückel method of electronic structure calculation can be drawn, which allows one to grasp the results of the spin-wave theory or the magnetic excitation spectrum, respectively, in a chemical language.
混合价态 Mn(10) 超四面体聚集体 [Mn(III)(6)Mn(II)(4)(μ(4)-O)(4)(μ(3)-N(3))(3)(μ(3)-Br)(Hmpt)(6)(Br)]Br(0.7)(N(3))(0.3)·2MeOH·3MeCN(1)(H(3)mpt=3-甲基戊烷-1,3,5-三醇)的合成、晶体结构及磁性质通过磁化和非弹性中子散射(INS)研究。分子的磁核可以描述为一个由六个 S=2 Mn(III) 离子组成的八面体,每个面都被一个 S=5/2 Mn(II) 离子封顶,形成超四面体。与大多数相关配合物不同,分子对称性从近似 T(d) 降低到 C(3)。磁数据表明,由于分子内的铁磁交换耦合,基态总自旋为 S=22。结合 INS 和磁数据,可以准确确定交换耦合常数。发现有两种类型。内八面体中 Mn(III) 离子之间的耦合由 J(a)=18.4(3) K 表征,而相邻 Mn(III) 离子与顶端 Mn(II) 离子之间的耦合由 J(b)=7.3(2) K 给出。与 J(b)相比,耦合强度 J(a)显著增大,且近 T(d)对称性对能谱有深远影响,对此进行了讨论和仔细分析。特别是,通过一个简化模型可以很好地重现观察到的 INS 谱,该模型将内八面体用一个长自旋 S(0)=12 的大自旋代替。该模型提供了对磁谱结构的直观理解。此外,在铁磁线性自旋波理论的框架内分析了低温下的磁激发,这允许对能级进行分析计算。对于铁磁团簇,可以与电子结构计算的 Hückel 方法进行密切类比,这分别允许以化学语言理解自旋波理论或磁激发谱的结果。