Suppr超能文献

人类听觉皮层中元音和辅音的分离:分布式层次组织的证据。

Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization.

作者信息

Obleser Jonas, Leaver Amber M, Vanmeter John, Rauschecker Josef P

机构信息

Laboratory of Integrative Neuroscience and Cognition, Department of Physiology and Biophysics, Georgetown University Medical Center Washington, DC, USA.

出版信息

Front Psychol. 2010 Dec 24;1:232. doi: 10.3389/fpsyg.2010.00232. eCollection 2010.

Abstract

The speech signal consists of a continuous stream of consonants and vowels, which must be de- and encoded in human auditory cortex to ensure the robust recognition and categorization of speech sounds. We used small-voxel functional magnetic resonance imaging to study information encoded in local brain activation patterns elicited by consonant-vowel syllables, and by a control set of noise bursts. First, activation of anterior-lateral superior temporal cortex was seen when controlling for unspecific acoustic processing (syllables versus band-passed noises, in a "classic" subtraction-based design). Second, a classifier algorithm, which was trained and tested iteratively on data from all subjects to discriminate local brain activation patterns, yielded separations of cortical patches discriminative of vowel category versus patches discriminative of stop-consonant category across the entire superior temporal cortex, yet with regional differences in average classification accuracy. Overlap (voxels correctly classifying both speech sound categories) was surprisingly sparse. Third, lending further plausibility to the results, classification of speech-noise differences was generally superior to speech-speech classifications, with the no\ exception of a left anterior region, where speech-speech classification accuracies were significantly better. These data demonstrate that acoustic-phonetic features are encoded in complex yet sparsely overlapping local patterns of neural activity distributed hierarchically across different regions of the auditory cortex. The redundancy apparent in these multiple patterns may partly explain the robustness of phonemic representations.

摘要

语音信号由一连串连续的辅音和元音组成,这些辅音和元音必须在人类听觉皮层中进行解码和编码,以确保对语音的可靠识别和分类。我们使用小体素功能磁共振成像来研究由辅音 - 元音音节以及一组对照噪声脉冲所引发的局部脑激活模式中编码的信息。首先,在控制非特异性声学处理时(在基于“经典”减法设计中,音节与带通噪声对比),观察到前外侧颞上回的激活。其次,一种分类算法,该算法在所有受试者的数据上进行迭代训练和测试以区分局部脑激活模式,在整个颞上回中产生了区分元音类别与塞音类别皮质斑块的分离,但平均分类准确率存在区域差异。重叠部分(正确对两种语音类别进行分类的体素)出奇地稀疏。第三,为结果提供了进一步的可信度,语音 - 噪声差异的分类通常优于语音 - 语音分类,除了左前区域,在该区域语音 - 语音分类准确率明显更高。这些数据表明,声学语音特征在听觉皮层不同区域分层分布的复杂但稀疏重叠的局部神经活动模式中进行编码。这些多种模式中明显的冗余可能部分解释了音素表征的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcfb/3125530/0fee6b5a9399/fpsyg-01-00232-g001.jpg

相似文献

1
Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization.
Front Psychol. 2010 Dec 24;1:232. doi: 10.3389/fpsyg.2010.00232. eCollection 2010.
2
Mapping the cortical representation of speech sounds in a syllable repetition task.
Neuroimage. 2016 Nov 1;141:174-190. doi: 10.1016/j.neuroimage.2016.07.023. Epub 2016 Jul 13.
3
Categorical speech perception during active discrimination of consonants and vowels.
Neuropsychologia. 2014 Nov;64:13-23. doi: 10.1016/j.neuropsychologia.2014.09.006. Epub 2014 Sep 16.
4
Categorical Encoding of Vowels in Primary Auditory Cortex.
Cereb Cortex. 2020 Mar 21;30(2):618-627. doi: 10.1093/cercor/bhz112.
5
Hierarchical organization of speech perception in human auditory cortex.
Front Neurosci. 2014 Dec 11;8:406. doi: 10.3389/fnins.2014.00406. eCollection 2014.
7
Speech training alters consonant and vowel responses in multiple auditory cortex fields.
Behav Brain Res. 2015;287:256-64. doi: 10.1016/j.bbr.2015.03.044. Epub 2015 Mar 28.
8
Deciphering phonemes from syllables in blood oxygenation level-dependent signals in human superior temporal gyrus.
Eur J Neurosci. 2016 Mar;43(6):773-81. doi: 10.1111/ejn.13164. Epub 2016 Feb 9.
9
Vowel sound extraction in anterior superior temporal cortex.
Hum Brain Mapp. 2006 Jul;27(7):562-71. doi: 10.1002/hbm.20201.
10
Neural representation of vowel formants in tonotopic auditory cortex.
Neuroimage. 2018 Sep;178:574-582. doi: 10.1016/j.neuroimage.2018.05.072. Epub 2018 May 31.

引用本文的文献

2
Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions.
PLoS Biol. 2023 Dec 13;21(12):e3002366. doi: 10.1371/journal.pbio.3002366. eCollection 2023 Dec.
4
Vowel and formant representation in the human auditory speech cortex.
Neuron. 2023 Jul 5;111(13):2105-2118.e4. doi: 10.1016/j.neuron.2023.04.004. Epub 2023 Apr 26.
5
Low-level language processing in brain-injured patients.
Brain Commun. 2023 Mar 25;5(2):fcad094. doi: 10.1093/braincomms/fcad094. eCollection 2023.
6
Formant-Based Recognition of Words and Other Naturalistic Sounds in Rhesus Monkeys.
Front Neurosci. 2021 Oct 29;15:728686. doi: 10.3389/fnins.2021.728686. eCollection 2021.
7
Perceptuomotor compatibility effects in vowels: Beyond phonemic identity.
Atten Percept Psychophys. 2020 Jul;82(5):2751-2764. doi: 10.3758/s13414-020-02014-1.
9
Categorical Encoding of Vowels in Primary Auditory Cortex.
Cereb Cortex. 2020 Mar 21;30(2):618-627. doi: 10.1093/cercor/bhz112.
10
Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making.
Netw Neurosci. 2017 Jun 1;1(2):166-191. doi: 10.1162/NETN_a_00009. eCollection 2017 Spring.

本文引用的文献

1
Dissociable neural imprints of perception and grammar in auditory functional imaging.
Hum Brain Mapp. 2012 Mar;33(3):584-95. doi: 10.1002/hbm.21235. Epub 2011 Mar 9.
2
Comparison of multivariate classifiers and response normalizations for pattern-information fMRI.
Neuroimage. 2010 Oct 15;53(1):103-18. doi: 10.1016/j.neuroimage.2010.05.051. Epub 2010 May 23.
3
Cortical representation of natural complex sounds: effects of acoustic features and auditory object category.
J Neurosci. 2010 Jun 2;30(22):7604-12. doi: 10.1523/JNEUROSCI.0296-10.2010.
4
Syntactic structure building in the anterior temporal lobe during natural story listening.
Brain Lang. 2012 Feb;120(2):163-73. doi: 10.1016/j.bandl.2010.04.002. Epub 2010 May 15.
5
Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech.
Cereb Cortex. 2010 Oct;20(10):2486-95. doi: 10.1093/cercor/bhp318. Epub 2010 Jan 25.
6
Tonotopic organization of human auditory cortex.
Neuroimage. 2010 Apr 15;50(3):1202-11. doi: 10.1016/j.neuroimage.2010.01.046. Epub 2010 Jan 22.
7
Where are the human speech and voice regions, and do other animals have anything like them?
Neuroscientist. 2009 Oct;15(5):419-29. doi: 10.1177/1073858408326430. Epub 2009 Jun 10.
8
Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing.
Nat Neurosci. 2009 Jun;12(6):718-24. doi: 10.1038/nn.2331. Epub 2009 May 26.
9
Decoding visual consciousness from human brain signals.
Trends Cogn Sci. 2009 May;13(5):194-202. doi: 10.1016/j.tics.2009.02.004. Epub 2009 Apr 15.
10
Pre-lexical abstraction of speech in the auditory cortex.
Trends Cogn Sci. 2009 Jan;13(1):14-9. doi: 10.1016/j.tics.2008.09.005. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验