Suppr超能文献

丁酰胆碱酯酶与丙酰普罗嗪对映体立体选择性相互作用的机制。

Mechanism of stereoselective interaction between butyrylcholinesterase and ethopropazine enantiomers.

机构信息

Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.

出版信息

Biochimie. 2011 Oct;93(10):1797-807. doi: 10.1016/j.biochi.2011.06.023. Epub 2011 Jun 29.

Abstract

Stereoselectivity of reversible inhibition of butyrylcholinesterase (BChE; EC 3.1.1.8) by optically pure ethopropazine [10-(2-diethylaminopropyl)phenothiazine hydrochloride] enantiomers and racemate was studied with acetylthiocholine (0.002-250 mM) as substrate. Molecular modelling resulted in the reaction between BChE and ethopropazine starting with the binding of ethopropazine to the enzyme peripheral anionic site. In the next step ethopropazine 'slides down' the enzyme gorge, resulting in interaction of the three rings of ethopropazine through π-π interactions with W82 in BChE. Inhibition mechanism was interpreted according to three kinetic models: A, B and C. The models differ in the type and number of enzyme-substrate, enzyme-inhibitor and enzyme-substrate-inhibitor complexes, i.e., presence of the Michaelis complex and/or acetylated BChE. Although, all three models reproduced well the BChE activity in absence of ethopropazine, model A was poor in describing inhibition with ethopropazine, while models B and C were better, especially for substrate concentrations above 0.2 mM. However model C was singled out because it approaches fulfilment of the one step-one event criteria, and confirms the inhibition mechanism derived from molecular modelling. Model C resulted in dissociation constants for the complex between BChE and ethopropazine: 61, 140 and 88 nM for R-enantiomer, S-enantiomer and racemate, respectively. The respective dissociation constants for the complexes between acetylated BChE and ethopropazine were 268, 730 and 365 nM. Butyrylcholinesterase had higher affinity for R-ethopropazine.

摘要

立体选择性的可逆抑制丁酰胆碱酯酶(BChE; EC 3.1.1.8)由光学纯的丙嗪[10-(2-二乙氨基丙基)吩噻嗪盐酸盐]对映异构体和外消旋体进行研究,以乙酰硫代胆碱(0.002-250 mM)为底物。分子模拟导致 BChE 与丙嗪反应,从丙嗪与酶外周阴离子结合开始。在下一个步骤中,丙嗪“向下滑动”酶峡谷,导致丙嗪的三个环通过与 BChE 中的 W82 的π-π相互作用相互作用。根据三种动力学模型解释抑制机制:A、B 和 C。这些模型在酶-底物、酶-抑制剂和酶-底物-抑制剂复合物的类型和数量上有所不同,即存在米氏复合物和/或乙酰化的 BChE。虽然所有三种模型都很好地再现了没有丙嗪时 BChE 的活性,但模型 A 在描述丙嗪抑制时效果不佳,而模型 B 和 C 更好,特别是在底物浓度高于 0.2 mM 时。然而,模型 C 被挑出来,因为它接近满足一步一事件的标准,并证实了从分子模拟得出的抑制机制。模型 C 导致 BChE 与丙嗪之间复合物的离解常数:R-对映体、S-对映体和外消旋体分别为 61、140 和 88 nM。乙酰化的 BChE 与丙嗪之间复合物的相应离解常数分别为 268、730 和 365 nM。丁酰胆碱酯酶对 R-丙嗪具有更高的亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验