Suppr超能文献

使用支持向量机对急性缺血组织转归进行定量预测。

Quantitative prediction of acute ischemic tissue fate using support vector machine.

机构信息

Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.

出版信息

Brain Res. 2011 Aug 8;1405:77-84. doi: 10.1016/j.brainres.2011.05.066. Epub 2011 Jun 12.

Abstract

Accurate and quantitative prediction of ischemic tissue fate could improve decision-making in the clinical treatment of acute stroke. The goal of the present study is to explore the novel use of support vector machine (SVM) to predict infarct on a pixel-by-pixel basis using only acute cerebral blood flow (CBF), apparent diffusion coefficient (ADC) MRI data. The efficacy of SVM prediction model was tested on three stroke groups: 30-min, 60-min, and permanent middle cerebral-artery occlusion (n=12 rats for each group). CBF, ADC and relaxation time constant (T2) were acquired during the acute phase up to 3h and again at 24h. Infarct was predicted using only acute (30-min) stroke data. Receiver-operating characteristic (ROC) analysis was used to quantify prediction accuracy. The areas under the receiver-operating curves were 86±2.7%, 89±1.4%, and 93±0.8% using ADC+CBF data for the 30-min, 60-min and permanent middle cerebral artery occlusion (MCAO) group, respectively. Adding neighboring pixel information and spatial infarction incidence improved performance to 88±2.8%, 94±0.8%, and 97±0.9%, respectively. SVM prediction compares favorably to a previously published artificial neural network (ANN) prediction algorithm operated on the same data sets. SVM prediction model has the potential to provide quantitative frameworks to aid clinical decision-making in the treatment of acute stroke.

摘要

准确和定量地预测缺血组织的命运可以改善急性中风临床治疗中的决策。本研究的目的是探索支持向量机(SVM)的新用途,仅使用急性脑血流(CBF)、表观扩散系数(ADC)MRI 数据,逐像素预测梗死。SVM 预测模型的疗效在三组中风中进行了测试:30 分钟、60 分钟和永久性大脑中动脉闭塞(每组 12 只大鼠)。在急性阶段(最长 3 小时)和 24 小时再次采集 CBF、ADC 和弛豫时间常数(T2)。仅使用急性(30 分钟)中风数据预测梗死。使用接收者操作特征(ROC)分析来量化预测准确性。使用 ADC+CBF 数据,对于 30 分钟、60 分钟和永久性大脑中动脉闭塞(MCAO)组,ROC 曲线下的面积分别为 86±2.7%、89±1.4%和 93±0.8%。添加相邻像素信息和空间梗死发生率可将性能分别提高到 88±2.8%、94±0.8%和 97±0.9%。SVM 预测与之前发表的基于相同数据集运行的人工神经网络(ANN)预测算法相比具有优势。SVM 预测模型有可能为急性中风的治疗提供辅助临床决策的定量框架。

相似文献

1
Quantitative prediction of acute ischemic tissue fate using support vector machine.
Brain Res. 2011 Aug 8;1405:77-84. doi: 10.1016/j.brainres.2011.05.066. Epub 2011 Jun 12.
2
Artificial neural network prediction of ischemic tissue fate in acute stroke imaging.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1661-70. doi: 10.1038/jcbfm.2010.56. Epub 2010 Apr 28.
3
Statistical prediction of tissue fate in acute ischemic brain injury.
J Cereb Blood Flow Metab. 2005 Oct;25(10):1336-45. doi: 10.1038/sj.jcbfm.9600126.
4
Quantitative prediction of ischemic stroke tissue fate.
NMR Biomed. 2008 Oct;21(8):839-48. doi: 10.1002/nbm.1264.
8
Brain tissue sodium is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia.
Stroke. 2000 Jun;31(6):1386-91; discussion 1392. doi: 10.1161/01.str.31.6.1386.

引用本文的文献

1
Artificial Intelligence shaping the future of neurology practice.
Med J Armed Forces India. 2021 Jul;77(3):276-282. doi: 10.1016/j.mjafi.2021.06.003. Epub 2021 Jul 1.
2
Interventional Radiology ex-machina: impact of Artificial Intelligence on practice.
Radiol Med. 2021 Jul;126(7):998-1006. doi: 10.1007/s11547-021-01351-x. Epub 2021 Apr 16.
3
Machine learning identifies stroke features between species.
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.
5
Machine Learning in Acute Ischemic Stroke Neuroimaging.
Front Neurol. 2018 Nov 8;9:945. doi: 10.3389/fneur.2018.00945. eCollection 2018.
6
Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms.
J Cereb Blood Flow Metab. 2017 Aug;37(8):3065-3076. doi: 10.1177/0271678X16683692. Epub 2016 Jan 1.
7
Magnetic Resonance Imaging of Cerebral Blood Flow in Animal Stroke Models.
Brain Circ. 2016 Jan;2(1):20-27. doi: 10.4103/2394-8108.178544. Epub 2016 Mar 11.
8
Stroke neuroprotection: targeting mitochondria.
Brain Sci. 2013 Apr 19;3(2):540-60. doi: 10.3390/brainsci3020540.
10
Multimodal MRI of experimental stroke.
Transl Stroke Res. 2012 Mar;3(1):8-15. doi: 10.1007/s12975-011-0140-y. Epub 2011 Dec 14.

本文引用的文献

1
Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans.
J Cereb Blood Flow Metab. 2011 Jul;31(7):1513-31. doi: 10.1038/jcbfm.2011.45. Epub 2011 Apr 20.
2
Artificial neural network prediction of ischemic tissue fate in acute stroke imaging.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1661-70. doi: 10.1038/jcbfm.2010.56. Epub 2010 Apr 28.
4
Class prediction models of thrombocytosis using genetic biomarkers.
Blood. 2010 Jan 7;115(1):7-14. doi: 10.1182/blood-2009-05-224477. Epub 2009 Sep 22.
5
Predictive modeling in glioma grading from MR perfusion images using support vector machines.
Magn Reson Med. 2008 Oct;60(4):945-52. doi: 10.1002/mrm.21736.
6
Quantitative prediction of ischemic stroke tissue fate.
NMR Biomed. 2008 Oct;21(8):839-48. doi: 10.1002/nbm.1264.
7
Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models.
J Cereb Blood Flow Metab. 2007 Jan;27(1):196-204. doi: 10.1038/sj.jcbfm.9600328. Epub 2006 May 10.
8
Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI.
Psychopharmacology (Berl). 2006 May;185(4):479-86. doi: 10.1007/s00213-006-0319-1. Epub 2006 Mar 21.
9
Cluster analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series.
IEEE Trans Med Imaging. 2006 Jan;25(1):62-73. doi: 10.1109/TMI.2005.861002.
10
Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies.
Stroke. 2005 Oct;36(10):2311-20. doi: 10.1161/01.STR.0000182100.65262.46. Epub 2005 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验