Suppr超能文献

使用支持向量机对急性缺血组织转归进行定量预测。

Quantitative prediction of acute ischemic tissue fate using support vector machine.

机构信息

Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.

出版信息

Brain Res. 2011 Aug 8;1405:77-84. doi: 10.1016/j.brainres.2011.05.066. Epub 2011 Jun 12.

Abstract

Accurate and quantitative prediction of ischemic tissue fate could improve decision-making in the clinical treatment of acute stroke. The goal of the present study is to explore the novel use of support vector machine (SVM) to predict infarct on a pixel-by-pixel basis using only acute cerebral blood flow (CBF), apparent diffusion coefficient (ADC) MRI data. The efficacy of SVM prediction model was tested on three stroke groups: 30-min, 60-min, and permanent middle cerebral-artery occlusion (n=12 rats for each group). CBF, ADC and relaxation time constant (T2) were acquired during the acute phase up to 3h and again at 24h. Infarct was predicted using only acute (30-min) stroke data. Receiver-operating characteristic (ROC) analysis was used to quantify prediction accuracy. The areas under the receiver-operating curves were 86±2.7%, 89±1.4%, and 93±0.8% using ADC+CBF data for the 30-min, 60-min and permanent middle cerebral artery occlusion (MCAO) group, respectively. Adding neighboring pixel information and spatial infarction incidence improved performance to 88±2.8%, 94±0.8%, and 97±0.9%, respectively. SVM prediction compares favorably to a previously published artificial neural network (ANN) prediction algorithm operated on the same data sets. SVM prediction model has the potential to provide quantitative frameworks to aid clinical decision-making in the treatment of acute stroke.

摘要

准确和定量地预测缺血组织的命运可以改善急性中风临床治疗中的决策。本研究的目的是探索支持向量机(SVM)的新用途,仅使用急性脑血流(CBF)、表观扩散系数(ADC)MRI 数据,逐像素预测梗死。SVM 预测模型的疗效在三组中风中进行了测试:30 分钟、60 分钟和永久性大脑中动脉闭塞(每组 12 只大鼠)。在急性阶段(最长 3 小时)和 24 小时再次采集 CBF、ADC 和弛豫时间常数(T2)。仅使用急性(30 分钟)中风数据预测梗死。使用接收者操作特征(ROC)分析来量化预测准确性。使用 ADC+CBF 数据,对于 30 分钟、60 分钟和永久性大脑中动脉闭塞(MCAO)组,ROC 曲线下的面积分别为 86±2.7%、89±1.4%和 93±0.8%。添加相邻像素信息和空间梗死发生率可将性能分别提高到 88±2.8%、94±0.8%和 97±0.9%。SVM 预测与之前发表的基于相同数据集运行的人工神经网络(ANN)预测算法相比具有优势。SVM 预测模型有可能为急性中风的治疗提供辅助临床决策的定量框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a474/3144979/09ea81598a58/nihms311415f1.jpg

相似文献

引用本文的文献

1
Artificial Intelligence shaping the future of neurology practice.人工智能塑造神经病学实践的未来。
Med J Armed Forces India. 2021 Jul;77(3):276-282. doi: 10.1016/j.mjafi.2021.06.003. Epub 2021 Jul 1.
3
Machine learning identifies stroke features between species.机器学习识别物种间的中风特征。
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.
5
Machine Learning in Acute Ischemic Stroke Neuroimaging.急性缺血性脑卒中神经影像学中的机器学习
Front Neurol. 2018 Nov 8;9:945. doi: 10.3389/fneur.2018.00945. eCollection 2018.
7
8
Stroke neuroprotection: targeting mitochondria.脑卒中神经保护:靶向线粒体。
Brain Sci. 2013 Apr 19;3(2):540-60. doi: 10.3390/brainsci3020540.
10
Multimodal MRI of experimental stroke.实验性脑卒中的多模态 MRI 研究
Transl Stroke Res. 2012 Mar;3(1):8-15. doi: 10.1007/s12975-011-0140-y. Epub 2011 Dec 14.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验