文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心率变异性复合体对预测急性心肌梗死后心脏死亡率的有用性。

Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction.

作者信息

Song Tao, Qu Xiu Fen, Zhang Ying Tao, Cao Wei, Han Bai He, Li Yang, Piao Jing Yan, Yin Lei Lei, Da Cheng Heng

机构信息

Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, No,23 Youzheng Street, Nangang District, Harbin City 150001, Heilongjiang Province, China.

出版信息

BMC Cardiovasc Disord. 2014 May 1;14:59. doi: 10.1186/1471-2261-14-59.


DOI:10.1186/1471-2261-14-59
PMID:24886422
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4023175/
Abstract

BACKGROUND: Previous studies indicate that decreased heart-rate variability (HRV) is related to the risk of death in patients after acute myocardial infarction (AMI). However, the conventional indices of HRV have poor predictive value for mortality. Our aim was to develop novel predictive models based on support vector machine (SVM) to study the integrated features of HRV for improving risk stratification after AMI. METHODS: A series of heart-rate dynamic parameters from 208 patients were analyzed after a mean follow-up time of 28 months. Patient electrocardiographic data were classified as either survivals or cardiac deaths. SVM models were established based on different combinations of heart-rate dynamic variables and compared to left ventricular ejection fraction (LVEF), standard deviation of normal-to-normal intervals (SDNN) and deceleration capacity (DC) of heart rate. We tested the accuracy of predictors by assessing the area under the receiver-operator characteristics curve (AUC). RESULTS: We evaluated a SVM algorithm that integrated various electrocardiographic features based on three models: (A) HRV complex; (B) 6 dimension vector; and (C) 8 dimension vector. Mean AUC of HRV complex was 0.8902, 0.8880 for 6 dimension vector and 0.8579 for 8 dimension vector, compared with 0.7424 for LVEF, 0.7932 for SDNN and 0.7399 for DC. CONCLUSIONS: HRV complex yielded the largest AUC and is the best classifier for predicting cardiac death after AMI.

摘要

背景:先前的研究表明,心率变异性(HRV)降低与急性心肌梗死(AMI)患者的死亡风险相关。然而,传统的HRV指标对死亡率的预测价值较差。我们的目的是开发基于支持向量机(SVM)的新型预测模型,以研究HRV的综合特征,从而改善AMI后的风险分层。 方法:在平均随访28个月后,分析了208例患者的一系列心率动态参数。将患者的心电图数据分类为存活或心源性死亡。基于心率动态变量的不同组合建立SVM模型,并与左心室射血分数(LVEF)、正常RR间期标准差(SDNN)和心率减速能力(DC)进行比较。我们通过评估受试者工作特征曲线(AUC)下的面积来测试预测指标的准确性。 结果:我们基于三种模型评估了一种整合各种心电图特征的SVM算法:(A)HRV复合体;(B)6维向量;和(C)8维向量。HRV复合体的平均AUC为0.8902,6维向量为0.8880,8维向量为0.8579,而LVEF为0.7424,SDNN为0.7932,DC为0.7399。 结论:HRV复合体产生的AUC最大,是预测AMI后心源性死亡的最佳分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2948/4023175/ce447471b596/1471-2261-14-59-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2948/4023175/ce447471b596/1471-2261-14-59-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2948/4023175/ce447471b596/1471-2261-14-59-1.jpg

相似文献

[1]
Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction.

BMC Cardiovasc Disord. 2014-5-1

[2]
Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study.

Lancet. 2006-5-20

[3]
Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study.

J Am Coll Cardiol. 1996-2

[4]
Predictive values of heart rate variability, deceleration and acceleration capacity of heart rate in post-infarction patients with LVEF ≥35.

Ann Noninvasive Electrocardiol. 2020-11

[5]
Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators.

Lancet. 1998-2-14

[6]
Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction.

Am J Cardiol. 1996-4-1

[7]
Temporal influences on the prediction of postinfarction mortality by heart rate variability: a comparison with the left ventricular ejection fraction.

Br Heart J. 1994-6

[8]
Risk assessment of post-myocardial infarction patients with preserved ejection fraction using 45-min short resting Holter electrocardiographic recordings.

Ann Noninvasive Electrocardiol. 2023-11

[9]
[Study of heart rate variability in acute myocardial infarction and its relationship with ventricular function and other clinical variables].

Rev Esp Cardiol. 1996-1

[10]
Effect of primary coronary intervention on heart rate variability and left ventricular function in patients with acute myocardial infarction.

Minerva Cardioangiol. 2007-12

引用本文的文献

[1]
Validation of nocturnal resting heart rate and heart rate variability in consumer wearables.

Physiol Rep. 2025-8

[2]
Vagal Nerve Biofeedback Intervention for Improving Health Outcomes Among Ukrainian Forced Migrants: A Proof-of-Concept Study.

Int J Environ Res Public Health. 2025-3-28

[3]
Heart Rate Variability and Global Longitudinal Strain for Prognostic Evaluation and Recovery Assessment in Conservatively Managed Post-Myocardial Infarction Patients.

J Clin Med. 2024-9-13

[4]
Update: factors influencing heart rate variability-a narrative review.

Front Physiol. 2024-8-6

[5]
Application of Computer-Assisted Endoscopic Ultrasonography Based on Texture Features in Differentiating Gastrointestinal Stromal Tumors from Benign Gastric Mesenchymal Tumors.

Turk J Gastroenterol. 2024-5

[6]
Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational health science.

J Occup Med Toxicol. 2024-5-13

[7]
The Validity of Heart Rate Variability Obtained from Electrocardiography and Blood Pressure in Rats Subjected to Isoproterenol-Induced Heart Ischemia.

J Tehran Heart Cent. 2023-1

[8]
Smart Wearables for the Detection of Occupational Physical Fatigue: A Literature Review.

Sensors (Basel). 2022-10-2

[9]
Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations.

Eur J Neurosci. 2022-10

[10]
Accuracy Assessment of Oura Ring Nocturnal Heart Rate and Heart Rate Variability in Comparison With Electrocardiography in Time and Frequency Domains: Comprehensive Analysis.

J Med Internet Res. 2022-1-18

本文引用的文献

[1]
Automated authorship attribution using advanced signal classification techniques.

PLoS One. 2013-2-20

[2]
On the parameter optimization of Support Vector Machines for binary classification.

J Integr Bioinform. 2012-7-24

[3]
How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis.

BMC Genomics. 2012-6-18

[4]
Average T-wave alternans activity in ambulatory ECG records predicts sudden cardiac death in patients with chronic heart failure.

Heart Rhythm. 2011-10-22

[5]
Nonlinear heart rate dynamics: circadian profile and influence of age and gender.

Med Eng Phys. 2011-8-17

[6]
Quantitative prediction of acute ischemic tissue fate using support vector machine.

Brain Res. 2011-6-12

[7]
Hospital discharge risk score system for the assessment of clinical outcomes in patients with acute myocardial infarction (Korea Acute Myocardial Infarction Registry [KAMIR] score).

Am J Cardiol. 2011-1-20

[8]
High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients.

Heart Rhythm. 2010-11-30

[9]
Usefulness of the Duke Sudden Cardiac Death risk score for predicting sudden cardiac death in patients with angiographic (>75% narrowing) coronary artery disease.

Am J Cardiol. 2009-12-15

[10]
The relationship between high resting heart rate and ventricular arrhythmogenesis in patients referred to ambulatory 24 h electrocardiographic recording.

Europace. 2009-11-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索