Song Tao, Qu Xiu Fen, Zhang Ying Tao, Cao Wei, Han Bai He, Li Yang, Piao Jing Yan, Yin Lei Lei, Da Cheng Heng
Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, No,23 Youzheng Street, Nangang District, Harbin City 150001, Heilongjiang Province, China.
BMC Cardiovasc Disord. 2014 May 1;14:59. doi: 10.1186/1471-2261-14-59.
BACKGROUND: Previous studies indicate that decreased heart-rate variability (HRV) is related to the risk of death in patients after acute myocardial infarction (AMI). However, the conventional indices of HRV have poor predictive value for mortality. Our aim was to develop novel predictive models based on support vector machine (SVM) to study the integrated features of HRV for improving risk stratification after AMI. METHODS: A series of heart-rate dynamic parameters from 208 patients were analyzed after a mean follow-up time of 28 months. Patient electrocardiographic data were classified as either survivals or cardiac deaths. SVM models were established based on different combinations of heart-rate dynamic variables and compared to left ventricular ejection fraction (LVEF), standard deviation of normal-to-normal intervals (SDNN) and deceleration capacity (DC) of heart rate. We tested the accuracy of predictors by assessing the area under the receiver-operator characteristics curve (AUC). RESULTS: We evaluated a SVM algorithm that integrated various electrocardiographic features based on three models: (A) HRV complex; (B) 6 dimension vector; and (C) 8 dimension vector. Mean AUC of HRV complex was 0.8902, 0.8880 for 6 dimension vector and 0.8579 for 8 dimension vector, compared with 0.7424 for LVEF, 0.7932 for SDNN and 0.7399 for DC. CONCLUSIONS: HRV complex yielded the largest AUC and is the best classifier for predicting cardiac death after AMI.
背景:先前的研究表明,心率变异性(HRV)降低与急性心肌梗死(AMI)患者的死亡风险相关。然而,传统的HRV指标对死亡率的预测价值较差。我们的目的是开发基于支持向量机(SVM)的新型预测模型,以研究HRV的综合特征,从而改善AMI后的风险分层。 方法:在平均随访28个月后,分析了208例患者的一系列心率动态参数。将患者的心电图数据分类为存活或心源性死亡。基于心率动态变量的不同组合建立SVM模型,并与左心室射血分数(LVEF)、正常RR间期标准差(SDNN)和心率减速能力(DC)进行比较。我们通过评估受试者工作特征曲线(AUC)下的面积来测试预测指标的准确性。 结果:我们基于三种模型评估了一种整合各种心电图特征的SVM算法:(A)HRV复合体;(B)6维向量;和(C)8维向量。HRV复合体的平均AUC为0.8902,6维向量为0.8880,8维向量为0.8579,而LVEF为0.7424,SDNN为0.7932,DC为0.7399。 结论:HRV复合体产生的AUC最大,是预测AMI后心源性死亡的最佳分类器。
BMC Cardiovasc Disord. 2014-5-1
Ann Noninvasive Electrocardiol. 2020-11
Ann Noninvasive Electrocardiol. 2023-11
Int J Environ Res Public Health. 2025-3-28
Front Physiol. 2024-8-6
Sensors (Basel). 2022-10-2
J Integr Bioinform. 2012-7-24
Med Eng Phys. 2011-8-17
Heart Rhythm. 2010-11-30