Institute for Perception, Action & Behaviour, University of Edinburgh, EH8 9AB, United Kingdom.
Neurobiol Learn Mem. 2011 Sep;96(2):339-52. doi: 10.1016/j.nlm.2011.06.009. Epub 2011 Jul 1.
Brain complexity varies across many orders of magnitude between animals, and it is often assumed that complexity underpins cognition. It is thus important to explore the cognitive capacity of widely used model organisms such as Drosophila. We systematically investigated the fly's ability to learn discriminations involving compound olfactory stimuli associated with shock. Flies could distinguish binary mixtures (AB+ CD-), including overlapping mixtures (AB+ BC-). They could learn positive patterning (AB+A- B-) but could not learn negative patterning (A+ B+ AB-) or solve a biconditional discrimination task (AB+ CD+ AC- BD-). Learning about the elements of a compound (AB+) was not affected by prior conditioning of one of the elements (A+ AB+): flies do not exhibit blocking in this task. We compare these results with the predictions from simulation of several well-known theoretical models of learning, and find none are fully consistent with the overall pattern of observed behaviour.
大脑的复杂性在动物之间存在着多个数量级的差异,人们通常认为复杂性是认知的基础。因此,探索广泛使用的模式生物(如果蝇)的认知能力非常重要。我们系统地研究了苍蝇区分与电击相关的复合嗅觉刺激的能力。苍蝇可以区分二元混合物(AB+ CD-),包括重叠混合物(AB+ BC-)。它们可以学习正模式(AB+A- B-),但不能学习负模式(A+ B+ AB-)或解决双条件辨别任务(AB+ CD+ AC- BD-)。学习一个复合元素(AB+)不会受到其中一个元素(A+ AB+)的先前条件作用的影响:苍蝇在这个任务中没有表现出阻断。我们将这些结果与几种著名的学习理论模型的模拟预测进行比较,发现没有一个模型完全符合观察到的行为模式。