Suppr超能文献

NusA 与大肠杆菌 RNA 聚合酶的 α 亚基相互作用是通过 UP 元件位点,并释放自身抑制。

NusA interaction with the α subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition.

机构信息

Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.

出版信息

Structure. 2011 Jul 13;19(7):945-54. doi: 10.1016/j.str.2011.03.024.

Abstract

Elongating Escherichia coli RNAP is modulated by NusA protein. The C-terminal domain (CTD) of the RNAP α subunit (αCTD) interacts with the acidic CTD 2 (AR2) of NusA, releasing the autoinhibitory blockade of the NusA S1-KH1-KH2 motif and allowing NusA to bind nascent nut spacer RNA. We determined the solution conformation of the AR2:αCTD complex. The αCTD residues that interface with AR2 are identical to those that recognize UP promoter elements A nusA-ΔAR2 mutation does not affect UP-dependent rrnH transcription initiation in vivo. Instead, the mutation inhibits Rho-dependent transcription termination at phage λtR1, which lies adjacent to the λnutR sequence. The Rho-dependent λtimm terminator, which is not preceded by a λnut sequence, is fully functional. We propose that constitutive binding of NusA-ΔAR2 to λnutR occludes Rho. In addition, the mutation confers a dominant defect in exiting stationary phase.

摘要

NusA 蛋白调节大肠杆菌 RNA 聚合酶的延伸。RNA 聚合酶 α 亚基(αCTD)的 C 端结构域(CTD)与 NusA 的酸性 CTD2(AR2)相互作用,释放 NusA S1-KH1-KH2 基序的自动抑制阻断,从而允许 NusA 结合新生的间隔 RNA。我们确定了 AR2:αCTD 复合物的溶液构象。与 AR2 相互作用的 αCTD 残基与识别 UP 启动子元件的残基相同,A nusA-ΔAR2 突变不会影响体内依赖 UP 的 rrnH 转录起始。相反,该突变抑制了紧邻 λnutR 序列的噬菌体 λtR1 处的 Rho 依赖性转录终止。不被 λnut 序列先导的 Rho 依赖性 λtimm 终止子完全有功能。我们提出,NusA-ΔAR2 与 λnutR 的组成性结合会阻碍 Rho。此外,该突变赋予了在静止期退出的显性缺陷。

相似文献

2
Transcription is regulated by NusA:NusG interaction.
Nucleic Acids Res. 2016 Jul 8;44(12):5971-82. doi: 10.1093/nar/gkw423. Epub 2016 May 12.
5
Pre-termination Transcription Complex: Structure and Function.
Mol Cell. 2021 Jan 21;81(2):281-292.e8. doi: 10.1016/j.molcel.2020.11.013. Epub 2020 Dec 8.
6
Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.
J Biol Chem. 2016 Apr 8;291(15):8090-108. doi: 10.1074/jbc.M115.701268. Epub 2016 Feb 12.
7
Thermotoga maritima NusG: domain interaction mediates autoinhibition and thermostability.
Nucleic Acids Res. 2017 Jan 9;45(1):446-460. doi: 10.1093/nar/gkw1111. Epub 2016 Nov 29.
9
SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA.
Nucleic Acids Res. 2019 Jul 9;47(12):6504-6518. doi: 10.1093/nar/gkz442.
10
Interaction with the nascent RNA is a prerequisite for the recruitment of Rho to the transcription elongation complex in vitro.
J Mol Biol. 2011 Oct 28;413(3):548-60. doi: 10.1016/j.jmb.2011.08.053. Epub 2011 Sep 6.

引用本文的文献

1
A complex between IF2 and NusA suggests early coupling of transcription-translation.
Nat Commun. 2025 Jul 26;16(1):6906. doi: 10.1038/s41467-025-62207-w.
3
Transcription complexes as RNA chaperones.
Transcription. 2021 Aug;12(4):126-155. doi: 10.1080/21541264.2021.1985931. Epub 2021 Nov 1.
4
Macromolecular assemblies supporting transcription-translation coupling.
Transcription. 2021 Aug;12(4):103-125. doi: 10.1080/21541264.2021.1981713. Epub 2021 Sep 27.
5
Pre-termination Transcription Complex: Structure and Function.
Mol Cell. 2021 Jan 21;81(2):281-292.e8. doi: 10.1016/j.molcel.2020.11.013. Epub 2020 Dec 8.
6
Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ.
Science. 2021 Jan 1;371(6524). doi: 10.1126/science.abd1673. Epub 2020 Nov 26.
7
In-cell architecture of an actively transcribing-translating expressome.
Science. 2020 Jul 31;369(6503):554-557. doi: 10.1126/science.abb3758.
8
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549. doi: 10.1073/pnas.2005019117. Epub 2020 Jul 16.
9
NusA directly interacts with antitermination factor Q from phage λ.
Sci Rep. 2020 Apr 20;10(1):6607. doi: 10.1038/s41598-020-63523-5.
10
Mechanisms of Transcriptional Pausing in Bacteria.
J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13.

本文引用的文献

2
Elongation by RNA polymerase: a race through roadblocks.
Curr Opin Struct Biol. 2009 Dec;19(6):691-700. doi: 10.1016/j.sbi.2009.10.004. Epub 2009 Nov 4.
3
The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA.
EMBO Rep. 2009 Sep;10(9):997-1002. doi: 10.1038/embor.2009.155. Epub 2009 Aug 14.
4
RNA-binding specificity of E. coli NusA.
Nucleic Acids Res. 2009 Aug;37(14):4736-42. doi: 10.1093/nar/gkp452. Epub 2009 Jun 10.
5
Recombineering: a homologous recombination-based method of genetic engineering.
Nat Protoc. 2009;4(2):206-23. doi: 10.1038/nprot.2008.227.
6
Regulator trafficking on bacterial transcription units in vivo.
Mol Cell. 2009 Jan 16;33(1):97-108. doi: 10.1016/j.molcel.2008.12.021.
7
Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli.
Science. 2008 May 16;320(5878):935-8. doi: 10.1126/science.1152763.
8
Recombineering: genetic engineering in bacteria using homologous recombination.
Curr Protoc Mol Biol. 2007 Apr;Chapter 1:Unit 1.16. doi: 10.1002/0471142727.mb0116s78.
10
Emergent properties of reduced-genome Escherichia coli.
Science. 2006 May 19;312(5776):1044-6. doi: 10.1126/science.1126439. Epub 2006 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验