Experimental Pharmacology Unit, Istituto Nazionale per lo studio e la cura dei Tumori-Fondazione G. Pascale, Naples, Italy.
J Natl Cancer Inst. 2011 Aug 3;103(15):1190-204. doi: 10.1093/jnci/djr243. Epub 2011 Jul 8.
BACKGROUND: TGF-β-activated kinase-1 (TAK1), a mitogen-activated protein kinase kinase kinase, functions in the activation of nuclear factor κB (NF-κB) and activator protein-1, which can suppress proapoptotic signaling pathways and thus promote resistance to chemotherapeutic drugs. However, it is not known if inhibition of TAK1 is effective in reducing chemoresistance to therapeutic drugs against pancreatic cancer. METHODS: NF-κB activity was measured by luciferase reporter assay in human pancreatic cancer cell lines AsPc-1, PANC-1, and MDAPanc-28, in which TAK1 expression was silenced by small hairpin RNA. TAK1 kinase activity was targeted in AsPc-1, PANC-1, MDAPanc-28, and Colo357FG cells with exposure to increasing doses of a selective small-molecule inhibitor, LYTAK1, for 24 hours. To test the effect of LYTAK1 in combination with chemotherapeutic agents, AsPc-1, PANC-1, MDAPanc-28 cells, and control cells were treated with increasing doses of oxaliplatin, SN-38, or gemcitabine in combination with LYTAK1. In vivo activity of oral LYTAK1 was evaluated in an orthotopic nude mouse model (n = 40, 5 per group) with luciferase-expressing AsPc-1 pancreatic cancer cells. The results of in vitro proliferation were analyzed for statistical significance of differences by nonlinear regression analysis; differences in mouse survival were determined using a log-rank test. All statistical tests were two-sided. RESULTS: AsPc-1 and MDAPanc-28 TAK1 knockdown cells had a statistically significantly lower NF-κB activity than did their respective control cell lines (relative luciferase activity: AsPc-1, mean = 0.18, 95% confidence interval [CI] = 0.10 to 0.27; control, mean = 3.06, 95% CI = 2.31 to 3.80; MDAPanc-28, mean = 0.30, 95% CI = 0.13 to 0.46; control, mean = 4.53, 95% CI = 3.43 to 5.63; both P < .001). TAK1 inhibitor LYTAK1 had potent in vitro cytotoxic activity in AsPc-1, PANC-1, MDAPanc-28, and Colo357FG cells, with IC(50) between 5 and 40 nM. LYTAK1 also potentiated the cytotoxicity of chemotherapeutic agents oxaliplatin, SN-38, and gemcitabine in AsPc-1, PANC-1, and MDAPanc-28 cells compared with control cells (P < .001). In nude mice, oral administration of LYTAK1 plus gemcitabine statistically significantly reduced tumor burden (gemcitabine vs gemcitabine plus LYTAK1, P = .03) and prolonged survival duration (median survival: gemcitabine, 82 days vs gemcitabine plus LYTAK1, 122 days; hazard ratio = 0.334, 95% CI = 0.027 to 0.826, P = .029). CONCLUSIONS: The results of this study suggest that genetic silencing or inhibition of TAK1 kinase activity in vivo is a potential therapeutic approach to reversal of the intrinsic chemoresistance of pancreatic cancer.
背景:TGF-β 激活激酶 1(TAK1)是丝裂原活化蛋白激酶激酶激酶,在核因子 κB(NF-κB)和激活蛋白-1 的激活中起作用,可抑制促凋亡信号通路,从而促进对化疗药物的耐药性。然而,尚不清楚抑制 TAK1 是否能有效降低治疗胰腺癌的药物的化疗耐药性。
方法:通过荧光素酶报告基因检测人胰腺癌细胞系 AsPc-1、PANC-1 和 MDAPanc-28 中 NF-κB 的活性,其中 TAK1 的表达通过小发夹 RNA 沉默。用选择性小分子抑制剂 LYTAK1 处理 AsPc-1、PANC-1、MDAPanc-28 和 Colo357FG 细胞 24 小时,靶向 TAK1 激酶活性。为了测试 LYTAK1 联合化疗药物的效果,用递增剂量的奥沙利铂、SN-38 或吉西他滨联合 LYTAK1 处理 AsPc-1、PANC-1、MDAPanc-28 细胞和对照细胞。在携带萤光素酶表达的 AsPc-1 胰腺癌细胞的原位裸鼠模型中评估口服 LYTAK1 的体内活性(n=40,每组 5 只)。通过非线性回归分析对体外增殖结果进行差异的统计学显著性分析;通过对数秩检验确定小鼠生存差异。所有统计检验均为双侧。
结果:与各自的对照细胞系相比,AsPc-1 和 MDAPanc-28 TAK1 敲低细胞的 NF-κB 活性明显降低(相对荧光素酶活性:AsPc-1,平均值=0.18,95%置信区间[CI]为 0.10 至 0.27;对照,平均值=3.06,95%CI 为 2.31 至 3.80;MDAPanc-28,平均值=0.30,95%CI 为 0.13 至 0.46;对照,平均值=4.53,95%CI 为 3.43 至 5.63;均 P<0.001)。TAK1 抑制剂 LYTAK1 在 AsPc-1、PANC-1、MDAPanc-28 和 Colo357FG 细胞中具有强大的体外细胞毒性活性,IC50 为 5 至 40 nM。与对照细胞相比,LYTAK1 还增强了奥沙利铂、SN-38 和吉西他滨在 AsPc-1、PANC-1 和 MDAPanc-28 细胞中的细胞毒性(P<0.001)。在裸鼠中,口服 LYTAK1 联合吉西他滨统计学上显著降低了肿瘤负担(吉西他滨 vs 吉西他滨联合 LYTAK1,P=0.03)并延长了生存时间(中位生存:吉西他滨,82 天 vs 吉西他滨联合 LYTAK1,122 天;危险比=0.334,95%CI 为 0.027 至 0.826,P=0.029)。
结论:这项研究的结果表明,体内遗传沉默或抑制 TAK1 激酶活性可能是逆转胰腺癌内在化疗耐药性的一种潜在治疗方法。
J Natl Cancer Inst. 2011-7-8
J Gastrointest Surg. 2012-5-23
Cancers (Basel). 2023-4-25
Signal Transduct Target Ther. 2023-5-11
CA Cancer J Clin. 2010-7-7
Cancer Cell. 2010-5-18
Proc Natl Acad Sci U S A. 2009-12-18
Nat Rev Gastroenterol Hepatol. 2009-7