Department of Biological Sciences, Marquette University, 530 N. 15th Street, Milwaukee WI 53233, USA.
Integr Comp Biol. 2011 Dec;51(6):869-78. doi: 10.1093/icb/icr077. Epub 2011 Jul 9.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.
在低等脊椎动物中,用于轴向肌肉的运动爆发发生器通常产生单侧爆发,这些爆发在身体的两侧之间交替出现。在七鳃鳗这种低等脊椎动物中,分离的脊髓的轴向前根中的运动活动可以在爆发的时间上表现出灵活性,以适应位于背部的肌节肌肉纤维与位于腹部的肌节肌肉纤维。这种同步性降低的爆发可以自发发生,尤其是在起源于游泳身体波传播的头段脊髓中。应用血清素,一种已知在七鳃鳗中突触前抑制兴奋性突触的内源性脊髓神经递质,可以促进背-腹爆发的同步性降低。这些观察结果表明,可能存在具有可调节耦合强度的背侧和腹侧运动网络。运动神经元的细胞内记录在运动活动期间为该模型提供了一些支持。在模拟运动期间,支配同侧背-腹相似位置肌节肌肉纤维的运动神经元对快速突触活动的相关性往往高于支配不同同侧背-腹位置肌节的运动神经元对的相关性,这表明它们由不同的运动前中间神经元群体控制。此外,这些不同的运动神经元池从单个网状脊髓神经元接收不同的兴奋性和抑制性输入模式,部分通过不同的运动前中间神经元组传递。也许,那么,七鳃鳗的运动网络不是简单地在脊髓的每一侧都是一个单元爆发发生器,同时激活所有同侧身体肌肉。相反,每一侧的爆发发生器可能至少包括两个耦合的爆发发生器,一个控制支配背部身体肌肉的运动神经元,一个控制支配腹部身体肌肉的运动神经元。这两个同侧爆发发生器之间的耦合强度可能是可调节的,并且在需要更大的游泳机动性时会减弱。在七鳃鳗中节内爆发发生器的可变耦合可能是控制附肢脊椎动物关节运动中观察到的爆发发生器可变耦合的前兆。