Suppr超能文献

精神分裂症患者的海马中间神经元异常。

Hippocampal interneurons are abnormal in schizophrenia.

机构信息

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA.

出版信息

Schizophr Res. 2011 Sep;131(1-3):165-73. doi: 10.1016/j.schres.2011.06.007. Epub 2011 Jul 13.

Abstract

OBJECTIVE

The cellular substrate of hippocampal dysfunction in schizophrenia remains unknown. We tested the hypothesis that hippocampal interneurons are abnormal in schizophrenia, but that the total number of hippocampal neurons in the pyramidal cell layer is normal.

METHODS

We collected whole hippocampal specimens of 13 subjects with schizophrenia and 20 matched healthy control subjects to study the number of all neurons, the somal volume of neurons, the number of somatostatin- and parvalbumin-positive interneurons and the messenger RNA levels of somatostatin, parvalbumin and glutamic acid decarboxylase 67.

RESULTS

The total number of hippocampal neurons in the pyramidal cell layer was normal in schizophrenia, but the number of somatostatin- and parvalbumin-positive interneurons, and the level of somatostatin, parvalbumin and glutamic acid decarboxylase mRNA expression were reduced.

CONCLUSIONS

The study provides strong evidence for a specific defect of hippocampal interneurons in schizophrenia and has implications for emerging models of hippocampal dysfunction in schizophrenia.

摘要

目的

精神分裂症中海马功能障碍的细胞基础仍不清楚。我们检验了以下假说,即精神分裂症中海马中间神经元异常,但锥体细胞层中海马神经元的总数是正常的。

方法

我们收集了 13 名精神分裂症患者和 20 名匹配的健康对照者的整个海马标本,以研究所有神经元的数量、神经元的胞体体积、生长抑素和钙结合蛋白阳性中间神经元的数量以及生长抑素、钙结合蛋白和谷氨酸脱羧酶 67 的信使 RNA 水平。

结果

精神分裂症患者的锥体细胞层中海马神经元总数正常,但生长抑素和钙结合蛋白阳性中间神经元的数量以及生长抑素、钙结合蛋白和谷氨酸脱羧酶 mRNA 表达水平降低。

结论

该研究为精神分裂症中海马中间神经元的特定缺陷提供了有力证据,并对精神分裂症中海马功能障碍的新兴模型具有启示意义。

相似文献

1
Hippocampal interneurons are abnormal in schizophrenia.
Schizophr Res. 2011 Sep;131(1-3):165-73. doi: 10.1016/j.schres.2011.06.007. Epub 2011 Jul 13.
2
Hippocampal interneurons in bipolar disorder.
Arch Gen Psychiatry. 2011 Apr;68(4):340-50. doi: 10.1001/archgenpsychiatry.2010.175. Epub 2010 Dec 6.
3
Chemokine receptors and cortical interneuron dysfunction in schizophrenia.
Schizophr Res. 2015 Sep;167(1-3):12-7. doi: 10.1016/j.schres.2014.10.031. Epub 2014 Nov 11.
5
Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia.
Am J Psychiatry. 2016 Nov 1;173(11):1131-1139. doi: 10.1176/appi.ajp.2016.16010025. Epub 2016 Jul 22.
6
Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia.
Am J Psychiatry. 2012 Oct;169(10):1082-91. doi: 10.1176/appi.ajp.2012.12030305.
7
Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia.
Schizophr Res. 2016 Nov;177(1-3):3-9. doi: 10.1016/j.schres.2016.03.001. Epub 2016 Mar 10.
8
Differential expression of parvalbumin in neonatal phencyclidine-treated rats and socially isolated rats.
J Neurochem. 2013 Feb;124(4):548-57. doi: 10.1111/jnc.12061. Epub 2012 Dec 25.
9
Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
J Neurosci. 2003 Jul 16;23(15):6315-26. doi: 10.1523/JNEUROSCI.23-15-06315.2003.
10
Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene.
JAMA Psychiatry. 2015 Aug;72(8):747-56. doi: 10.1001/jamapsychiatry.2015.0533.

引用本文的文献

4
Cell Density and mRNA Expression of Inhibitory Interneurons in Schizophrenia: A Meta-Analysis.
bioRxiv. 2025 May 27:2025.05.23.655812. doi: 10.1101/2025.05.23.655812.
5
Brain mechanisms underlying the inhibitory control of thought.
Nat Rev Neurosci. 2025 May 16. doi: 10.1038/s41583-025-00929-y.
7
Mapping Lesions That Cause Psychosis to a Human Brain Circuit and Proposed Stimulation Target.
JAMA Psychiatry. 2025 Apr 1;82(4):368-378. doi: 10.1001/jamapsychiatry.2024.4534.
8
Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review.
Transl Psychiatry. 2025 Jan 24;15(1):21. doi: 10.1038/s41398-024-03221-2.
9
Predictive routing emerges from self-supervised stochastic neural plasticity.
bioRxiv. 2025 Feb 4:2024.12.31.630823. doi: 10.1101/2024.12.31.630823.
10
Alterations of the IKZF1-IKZF2 tandem in immune cells of schizophrenia patients regulate associated phenotypes.
J Neuroinflammation. 2024 Dec 18;21(1):326. doi: 10.1186/s12974-024-03320-3.

本文引用的文献

1
Hippocampal pathology in schizophrenia.
Curr Top Behav Neurosci. 2010;4:529-53. doi: 10.1007/7854_2010_43.
2
Prefrontal cortical circuits in schizophrenia.
Curr Top Behav Neurosci. 2010;4:485-508. doi: 10.1007/7854_2010_44.
3
Animal models of schizophrenia.
Curr Top Behav Neurosci. 2010;4:391-433. doi: 10.1007/7854_2010_62.
4
GABAergic interneuron origin of schizophrenia pathophysiology.
Neuropharmacology. 2012 Mar;62(3):1574-83. doi: 10.1016/j.neuropharm.2011.01.022. Epub 2011 Jan 26.
5
Hippocampal interneurons in bipolar disorder.
Arch Gen Psychiatry. 2011 Apr;68(4):340-50. doi: 10.1001/archgenpsychiatry.2010.175. Epub 2010 Dec 6.
6
Stereological approaches to identifying neuropathology in psychosis.
Biol Psychiatry. 2011 Jan 15;69(2):113-26. doi: 10.1016/j.biopsych.2010.04.030. Epub 2010 Aug 1.
7
Alterations of cortical GABA neurons and network oscillations in schizophrenia.
Curr Psychiatry Rep. 2010 Aug;12(4):335-44. doi: 10.1007/s11920-010-0124-8.
10
Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models.
Schizophr Bull. 2010 Mar;36(2):301-13. doi: 10.1093/schbul/sbp133. Epub 2009 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验