Suppr超能文献

钙离子火花引发气道平滑肌细胞 STOCs 时 RYR 和 BK 通道的空间组织。

Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca(2+) sparks in airway myocytes.

机构信息

Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

J Gen Physiol. 2011 Aug;138(2):195-209. doi: 10.1085/jgp.201110626. Epub 2011 Jul 11.

Abstract

Short-lived, localized Ca(2+) events mediate Ca(2+) signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca(2+)-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca(2+) signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca(2+) signaling system composed of Ca(2+) sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca(2+)-activated K(+) (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca(2+) sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca(2+) spark, which activates ∼15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca(2+)] resulting from Ca(2+) sparks, and the kinetic model of BK channels, we estimate that an average Ca(2+) spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ∼600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca(2+) sparks using explicit knowledge of the spatial relationship between RYRs (the Ca(2+) source) and BK channels (the Ca(2+) target).

摘要

短暂而局部的 Ca(2+)事件通过 Ca(2+)-通透离子通道与其分子靶标之间的紧密接近,以高效率和高度保真度介导 Ca(2+)信号转导。然而,在大多数情况下,缺乏这两种分子之间空间关系的直接证据,因此,局部 Ca(2+)信号转导的机制理解是不完整的。在这项研究中,我们使用一种综合的方法来解决这个问题,研究由肌质网 Ca(2+) 释放通道(ryanodine receptors,RYRs)开放引起的 Ca(2+)火花和由 Ca(2+)-激活的 K(+)(BK)通道开放引起的自发性瞬时外向电流(spontaneous transient outward currents,STOCs)组成的典型局部 Ca(2+)信号转导系统。在 333 Hz 下对 STOCs 和 Ca(2+)火花进行的生物物理分析表明,这两个事件在时间上密切相关,大约有 8 个 RYRs 开放引发一个 Ca(2+)火花,该火花激活约 15 个 BK 通道,在 0 mV 时产生一个 STOC。双重免疫细胞化学和高空间分辨率的 3-D 反卷积显示,RYRs 和 BK 通道都形成簇,RYR1 和 RYR2(但不是 RYR3)定位于膜附近。利用 RYRs 和 BK 通道之间的空间关系、Ca(2+)火花引起的[Ca(2+)]的时空分布以及 BK 通道的动力学模型,我们估计,由 RYR1 或 RYR2 簇开放引起的平均 Ca(2+)火花作用于 BK 通道来自两个到三个簇,这些簇随机分布在 RYRs 半径约 600nm 的范围内。有了 RYRs 和 BK 通道的这种空间组织,我们就能够用模型来模拟 BK 通道电流,其特征与 STOCs 在一系列生理膜电位下观察到的特征相同。因此,这项研究提供了对 Ca(2+)火花激活 STOCs 的机制理解,利用了 RYRs(Ca(2+) 源)和 BK 通道(Ca(2+) 靶)之间空间关系的明确知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c435/3149436/4e3e8bab2df5/JGP_201110626_RGB_Fig1.jpg

相似文献

1
Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca(2+) sparks in airway myocytes.
J Gen Physiol. 2011 Aug;138(2):195-209. doi: 10.1085/jgp.201110626. Epub 2011 Jul 11.
7
Ca(2+) sparks and BK currents in gallbladder myocytes: role in CCK-induced response.
Am J Physiol Gastrointest Liver Physiol. 2002 Jan;282(1):G165-74. doi: 10.1152/ajpgi.00326.2001.
9
RYR2 proteins contribute to the formation of Ca(2+) sparks in smooth muscle.
J Gen Physiol. 2004 Apr;123(4):377-86. doi: 10.1085/jgp.200308999. Epub 2004 Mar 15.

引用本文的文献

1
Ca dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract.
Physiol Rev. 2024 Jan 1;104(1):329-398. doi: 10.1152/physrev.00036.2022. Epub 2023 Aug 10.
2
Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle.
Int J Mol Sci. 2023 Apr 26;24(9):7879. doi: 10.3390/ijms24097879.
3
MicroRNA-210 Mediates Hypoxia-Induced Repression of Spontaneous Transient Outward Currents in Sheep Uterine Arteries During Gestation.
Hypertension. 2021 Apr;77(4):1412-1427. doi: 10.1161/HYPERTENSIONAHA.120.16831. Epub 2021 Mar 1.
5
BK Channels as Targets for Cardioprotection.
Antioxidants (Basel). 2020 Aug 17;9(8):760. doi: 10.3390/antiox9080760.
10
Ca signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon.
J Physiol. 2019 Jul;597(14):3587-3617. doi: 10.1113/JP278036. Epub 2019 Jun 13.

本文引用的文献

1
Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells.
J Gen Physiol. 2010 Sep;136(3):283-91. doi: 10.1085/jgp.201010453. Epub 2010 Aug 16.
2
Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle.
J Biol Chem. 2010 Apr 30;285(18):13542-9. doi: 10.1074/jbc.M110.101485. Epub 2010 Feb 21.
3
Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus.
Circ Res. 2010 Apr 2;106(6):1164-73. doi: 10.1161/CIRCRESAHA.109.209767. Epub 2010 Feb 18.
5
Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.
J Biol Chem. 2010 Jan 15;285(3):2203-10. doi: 10.1074/jbc.M109.067546. Epub 2009 Nov 17.
6
Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1-subunit.
J Physiol. 2009 Jun 15;587(Pt 12):3025-44. doi: 10.1113/jphysiol.2009.169920. Epub 2009 Apr 9.
9
Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
Biophys J. 2007 May 15;92(10):3541-55. doi: 10.1529/biophysj.106.099028. Epub 2007 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验